Hoppa till huvudinnehållet
Till KTH:s startsida

DD2438 Artificiell intelligens och multiagentsystem 15,0 hp

I denna kurs kommer vi att studera problem av följande typ:

  • AI för dataspel (t.ex Call of Duty, FIFA, Rocket League)
  • AI för robotar (t.ex. samarbetande search and rescue-robotar, robotfotboll, servicerobotar)

Detta inkluderar ämnen så som

  • Cooperative path planning
  • Cooperative task assignment
  • Formation keeping
  • Motion coordination 

I både dataspel och framtida robotsystem förväntas grupper av samarbetande agenter, s.k. multi agent systems tillföra nya möjligheter avseende förmågor, effektivitet och flexibilitet.

I denna kurs kommer ni att designa och implementera ett antal lösningar till multi agent problem. Ni kommer att använda simuleringsmiljön Unity 3D, vilket medför att ni kan förstå, testa och utveckla era lösningar i en miljö med både fysiksimulering och bra grafik. Unity 3d medför också att ni (om ni vill) kan exportera era projekt till fristående körbara spel.

Kursen kommer att ges på engelska.

Information per kursomgång

Välj termin och kursomgång för att se aktuell information och mer om kursen, såsom kursplan, studieperiod och anmälningsinformation.

Termin

Information för VT 2025 agent25 programstuderande

Studielokalisering

KTH Campus

Varaktighet
2025-01-14 - 2025-06-02
Perioder
P3 (7,0 hp), P4 (8,0 hp)
Studietakt

50%

Anmälningskod

60209

Undervisningsform

Normal Dagtid

Undervisningsspråk

Engelska

Kurs-PM
Kurs-PM är inte publicerat
Antal platser

Ingen platsbegränsning

Målgrupp

TCSCM, TIEMM, TMAIM, TSCRM, TMEKM

Planerade schemamoduler
[object Object]

Kontakt

Examinator
Ingen information tillagd
Kursansvarig
Ingen information tillagd
Lärare
Ingen information tillagd
Kontaktperson

Petter Ögren, petter@kth.se, telefon: 790 6646

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan DD2438 (VT 2025–)
Rubriker med innehåll från kursplan DD2438 (VT 2025–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

I projektform kommer studenterna att designa och implementera ett multiagent-team som utför en uppgift. Det detaljerade kursinnehållet kan variera beroende på vilken typ av lösning som studenterna väljer.

Följande områden kommer att beröras i kursen: 

  • Cooperative path planning
  • Cooperative task assignment
  • Formation keeping
  • Motion coordination 

Kursen kommer även att ge övning i att leda, planera och arbeta i större projekt, att värdera existerande lösningar och deras tillämpbarhet och att arbeta med existerande kod.

Lärandemål

Efter godkänd kurs ska studenten kunna

  • använda ett antal viktiga verktyg och metoder inom området artificiell intelligens och multiagentsystem
  • utveckla multiagentsystem
  • värdera och använda existerande lösningar som del i ett programmeringsprojekt
  • planera och leda ett större projekt
  • presentera sina resultat, både skriftligt och muntligt
  • skriva en vetenskaplig artikel på engelska.

Kurslitteratur och förberedelser

Särskild behörighet

Kunskaper i introduktion till robotik, 7,5 hp, motsvarande slutförd kurs DD2410

eller

kunskaper i artificiell intelligens, 4 hp, motsvarande slutförd kurs DD2380/ID1214 eller slutfört moment LAB2 i DD2380 eller slutfört moment INL1 i ID1214.

Rekommenderade förkunskaper

DD2380 Artificial Intelligence (eller motsvarande)

Utrustning

Ingen information tillagd

Kurslitteratur

Ingen information tillagd

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

P, F

Examination

  • INL1 - Inlämningsuppgift, 3,0 hp, betygsskala: P, F
  • PRO1 - Programutvecklingsprojekt, 4,0 hp, betygsskala: P, F
  • PRO2 - Programutvecklingsprojekt, 4,0 hp, betygsskala: P, F
  • PRO3 - Programutvecklingsprojekt, 4,0 hp, betygsskala: P, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Datalogi och datateknik, Informations- och kommunikationsteknik, Informationsteknik

Utbildningsnivå

Avancerad nivå

Påbyggnad

Ingen information tillagd

Kontaktperson

Petter Ögren, petter@kth.se, telefon: 790 6646

Övrig information

I denna kurs tillämpas EECS hederskodex, se:
http://www.kth.se/eecs/utbildning/hederskodex