Hoppa till huvudinnehållet
Till KTH:s startsida

SF2957 Statistisk maskininlärning 7,5 hp

Information per kursomgång

Välj termin och kursomgång för att se aktuell information och mer om kursen, såsom kursplan, studieperiod och anmälningsinformation.

Termin

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan SF2957 (VT 2022–)
Rubriker med innehåll från kursplan SF2957 (VT 2022–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

Kursen ger en överblick av avancerade metoder inom statistisk maskininlärning och behandlar klassisk och Bayesiansk beslutsteori, djupinlärning för regression och klassificering, Gaussiska processer för regression och klassificering, klustring, reproducerande Hilbert-rum, förstärkningsinlärning och beräkningsmetoder i maskininlärning. Datorbaserade projekt med diverse datamängder utgör en viktig lärandeaktivitet.

Lärandemål

Efter godkänd kurs ska studenten kunna:

  •  formulera och tillämpa statistisk beslutsteori
  •  formulera och tillämpa avancerade metoder inom statistisk maskininlärning
  •  utforma och implementera avancerade metoder inom statistisk maskininlärning för tillämpningar

Kurslitteratur och förberedelser

Särskild behörighet

  • Engelska B / Engelska 6
  • Slutförd grundkurs i numerisk analys (SF1544, SF1545 eller motsvarande)
  • Slutförd grundkurs i sannolikhetsteori och statistik (SF1922, SF1914 eller motsvarande)
  • Slutförd avancerad kurs i sannolikhetsteori (SF2940 eller motsvarande)

Rekommenderade förkunskaper

Slutförda kurser SF2935 Moderna metoder i statistisk inlärning, eller motsvarande, samt SF2955 Datorintensiva metoder i statistik, eller motsvarande.

Utrustning

Ingen information tillagd

Kurslitteratur

Böcker, artiklar och föreläsningsanteckningar som presenteras pa kursens hemsida.

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

A, B, C, D, E, FX, F

Examination

  • PRO1 - Projekt, 3,0 hp, betygsskala: P, F
  • TENA - Skriftlig tentamen, 4,5 hp, betygsskala: A, B, C, D, E, FX, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Matematik

Utbildningsnivå

Avancerad nivå

Påbyggnad

Ingen information tillagd