Hoppa till huvudinnehållet
Till KTH:s startsida

FDD3558 Lösa tekniska problemer med neural inspirerad beräkning 5,0 hp

Kursen presenterar neuromorfisk ingenjörskonst som en ny metod för beräkningssystem som hämtar inspiration från nervsystem för att bearbeta information i rum och tid. Vi kommer att ge studenterna den teoretiska bakgrund som krävs för att implementera rums-temporal beräkning i neuroner och omedelbart tillämpa den insikten i praktiken. Konkret diskuterar vi (1) beräkningsmodeller och lärande i decentraliserade och parallella neurala system, (2) presenterar state-of-the-art neuromorfa mjukvara och hårdvaruplattformar, och (3) introducerar neuromorfa sensorer och robotar. Kursen avslutas med ett omfattande individuellt utformat projekt för alla studenter.

Information per kursomgång

Termin

Information för VT 2024 Start 2024-03-18 programstuderande

Studielokalisering

KTH Campus

Varaktighet
2024-03-18 - 2024-06-03
Perioder
P4 (5,0 hp)
Studietakt

25%

Anmälningskod

61027

Undervisningsform

Normal Dagtid

Undervisningsspråk

Engelska

Kurs-PM
Kurs-PM är inte publicerat
Antal platser

Ingen platsbegränsning

Målgrupp
Ingen information tillagd
Planerade schemamoduler
[object Object]
Schema
Schema är inte publicerat
Del av program
Ingen information tillagd

Kontakt

Examinator
Ingen information tillagd
Kursansvarig
Ingen information tillagd
Lärare
Ingen information tillagd

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan FDD3558 (VT 2024–)
Rubriker med innehåll från kursplan FDD3558 (VT 2024–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursupplägg

1. Beräkning med neuroner
2. Lärande i neurala system
3. Händelsebaserad avkänning och beräkning
4. Neuromorf hårdvara
5. Neuromorf robotik

Kursinnehåll

1. Beräkning med neuroner
2. Lärande i neurala system
3. Händelsebaserad avkänning och beräkning
4. Neuromorf hårdvara
5. Neuromorf robotik

Lärandemål

Efter avslutad kurs ska studenten kunna
(1) Beskriv beräkningsmodeller för läckande integratorer och läckande integrera-och-avfyra neuroner, samt sätt att representera och koda information med biofysiska modeller.
(2) Redogöra för anpassning och inlärning i neuromorfa neurala nätverk, inklusive övervakad optimering med hjälp av surrogatgradienter och oövervakade metoder, inklusive e-prop och EventProp.
(3) Förstå adress-händelsepresentationer och redogöra för funktionsprinciperna för händelsebaserade kameror och ställdon.
(4) Skriv och exekvera neuromorfa algoritmer på dedikerad neuromorf hårdvara.
(5) Analysera neuromorfa algoritmer kvantitativt och kvalitativt och redogöra för skillnader mellan neuromorfa och icke-neuromorfa algoritmer.
(6) Lös sensorbearbetning och sensorimotoriska problem med neuromorfa neurala nätverk.
(7) Implementera neuronal beräkning och maskininlärning som energieffektiva/energisparande processer.

Kurslitteratur och förberedelser

Särskild behörighet

Linear algebra (SF1604 eller liknande)
Machine learning (DD2421 eller liknande)
Artificial Neural Networks (DD2437 eller liknande, eller självstudier för att kompensera)

Rekommenderade förkunskaper

Linear algebra (SF1604 eller liknande)
Machine learning (DD2421 eller liknande)
Artificial Neural Networks (DD2437 eller liknande, eller självstudier för att kompensera)

Utrustning

Neuromorfa datorer och molnbaserade tjänster kommer att tillhandahållas vid behov för kursen.

Kurslitteratur

Aktuella forskningsrapporter kommer att tillhandahållas för de fem föreläsningstillfällena.

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

P, F

Examination

  • PRO1 - Projektuppgift, 4,0 hp, betygsskala: P, F
  • ÖVN1 - Övningsuppgift, 1,0 hp, betygsskala: P, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Studenterna utför labbövningar för de 5 olika föreläsningsämnena. Minst fyra av de fem föreläsningsövningarna behöver vara genomförda.

Övriga krav för slutbetyg

Studenterna designar och genomför ett projekt inom neuromophic computing efter föreläsningarna. Projektet får betyget P/F.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Denna kurs tillhör inget huvudområde.

Utbildningsnivå

Forskarnivå

Påbyggnad

Ingen information tillagd

Forskarkurs

Forskarkurser på EECS/Beräkningsvetenskap och beräkningsteknik