Kursen berör beräkningsproblem i massivt parallella artificiella neurala nätverksarkitekturer (ANN), som bygger på distribuerade enkla beräkningsnoder och robusta inlärningsalgoritmer som iterativt anpassar ansutningarna mellan noderna genom att i stor utsträckning använda tillgängliga data. Inlärningsregeln och nätverksarkitekturen avgör ANNs specifika beräkningsegenskaper. Kursen erbjuder en möjlighet att utveckla den konceptuella och teoretiska förståelsen av beräkningsförmågan hos ANNs med utgångspunkt i enklare system för att sedan gradvis studera mer avancerade arkitekturer. Därmed studeras en stor bredd av inlärningstyper – från strikt övervakade till rent explorativt oövervakade lägen. Kursens innehåll inkluderar därför bl.a. multi-layer perceptrons (MLPs), self-organising maps (SOMs), Boltzmann-maskiner, Hopfield-nätverk och state-of-the-art djupa neurala nätverk (DNNs) tillsammans med motsvarade inlärningsalgritmer. Ett viktigt kursmål är att studenterna ska erhålla praktisk erfarenhet av att välja, utveckla, tillämpa och validera lämpliga nätverk och algoritmer för att effektivt kunna hantera en bred klass av regression, klassificering, temporal prediktion, datamodellering, explorativ dataanalys och klustringsproblem. Slutligen ger kursen avslöjande insikter i principerna om ANNs generaliseringskapacitet, vilka ligger till grund för dess prediktiva kraft
Kursupplägg
12 föreläsningar, 4 laborationer, 1 projekt och examination
Kurslitteratur
- Stephen Marsland. Machine Learning, an Algorithmic Perspective, 2009,CSC-Press.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning., 2016, MIT press.
Ytterligare rekommenderad läsning kommer att tillkännages på kursens hemsida.