Hoppa till huvudinnehållet
Till KTH:s startsida

FDD3424 Djupinlärning i Data Science 7,5 hp

Information per kursomgång

Termin

Information för VT 2024 Start 2024-03-18 programstuderande

Studielokalisering

KTH Campus

Varaktighet
2024-03-18 - 2024-06-03
Perioder
P4 (7,5 hp)
Studietakt

50%

Anmälningskod

60849

Undervisningsform

Normal Dagtid

Undervisningsspråk

Engelska

Kurs-PM
Kurs-PM är inte publicerat
Antal platser

Ingen platsbegränsning

Målgrupp
Ingen information tillagd
Planerade schemamoduler
[object Object]
Schema
Schema är inte publicerat
Del av program
Ingen information tillagd

Kontakt

Examinator
Ingen information tillagd
Kursansvarig
Ingen information tillagd
Lärare
Ingen information tillagd

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan FDD3424 (VT 2019–)
Rubriker med innehåll från kursplan FDD3424 (VT 2019–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

  • Inlärning av representationer från rådata: bilder och text
  • Principer för övervakad inlärning
  • Elementa för olika metoder för djupinlärning: faltningsnätverk och upprepade nätverk
  • Teoretisk kunskap om och praktisk erfarenhet av att träna nätverk för djupinlärning inkuderande optimering med användande av stokastisk gradient descent
  • Nya framsteg inom metoder för djupinlärning
  • Analys av modeller och representationer
  • Överförd inlärning med representationer för djupinlärning
  • Exempel på tillämpningar av djupinlärning för inlärning av representationer och igenkänning

Lärandemål

Efter kursen ska du kunna:

  • förklara de grundläggande ideerna bakom inlärning, representation och igenkänning av rådata
  • redogöra för den teoretiska bakgrunden för de metoder för djupinlärning (deep learning) som är vanligast i praktiska sammanhang
  • identifiera de praktiska tillämpningar i olika områden av storskalig dataanalys (data science) där metoder för djupinlärning kan vara effektiva (med speciellt fokus på datorseende och språkteknologi)

för att:

  • kunna lösa problem kopplade till datarepresentation och igenkänning
  • kunna implementera, analysera och utvärdera enkla system för djupinlärning för automatisk analys av bild- och textdata
  • erhålla en bred kunskapsbas för att kunna tillgodogöra dig information om och läsa litteratur inom området

Kurslitteratur och förberedelser

Särskild behörighet

Ingen information tillagd

Utrustning

Ingen information tillagd

Kurslitteratur

Ingen information tillagd

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

P, F

Examination

  • EXA1 - Examination, 7,5 hp, betygsskala: P, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Denna kurs tillhör inget huvudområde.

Utbildningsnivå

Forskarnivå

Påbyggnad

Ingen information tillagd

Forskarkurs

Forskarkurser på EECS/Robotik, perception och lärande