Skip to main content
Till KTH:s startsida

EL1010 Automatic Control, General Course 6.0 credits

An introductory course on control systems. It provides the students with the basic engineering knowledge of dynamic systems and feedback. 

Information per course offering

Termin

Information for Autumn 2024 Start 28 Oct 2024 programme students

Course location

KTH Campus

Duration
28 Oct 2024 - 13 Jan 2025
Periods
P2 (6.0 hp)
Pace of study

33%

Application code

51522

Form of study

Normal Daytime

Language of instruction

Swedish

Number of places

Places are not limited

Target group

Open to all programmes, as long as it can be included in your programme.

Planned modular schedule
[object Object]
Part of programme

Degree Programme in Design and Product Realisation, åk 3, AEE, Mandatory

Degree Programme in Design and Product Realisation, åk 3, FOR, Mandatory

Degree Programme in Design and Product Realisation, åk 3, INE, Conditionally Elective

Degree Programme in Design and Product Realisation, åk 3, IPDE, Conditionally Elective

Degree Programme in Design and Product Realisation, åk 3, IPUB, Conditionally Elective

Degree Programme in Design and Product Realisation, åk 3, IPUC, Mandatory

Degree Programme in Design and Product Realisation, åk 3, MRS, Conditionally Elective

Degree Programme in Design and Product Realisation, åk 3, TEMA, Conditionally Elective

Degree Programme in Design and Product Realisation, åk 3, TEMB, Conditionally Elective

Degree Programme in Design and Product Realisation, åk 3, TEMC, Conditionally Elective

Degree Programme in Industrial Engineering and Management, åk 3, PPUI, Mandatory

Degree Programme in Mechanical Engineering, åk 3, AEE, Mandatory

Degree Programme in Mechanical Engineering, åk 3, FOR, Mandatory

Degree Programme in Mechanical Engineering, åk 3, INE, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, IPDE, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, IPUB, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, IPUC, Mandatory

Degree Programme in Mechanical Engineering, åk 3, MRS, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, MTH, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, NEE, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, PRM, Recommended

Degree Programme in Mechanical Engineering, åk 3, SUE, Recommended

Degree Programme in Mechanical Engineering, åk 3, SUT, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, TEMA, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, TEMB, Conditionally Elective

Degree Programme in Mechanical Engineering, åk 3, TEMC, Conditionally Elective

Degree Programme in Medical Engineering, åk 3, Mandatory

Degree Programme in Vehicle Engineering, åk 3, Mandatory

Master's Programme, ICT Innovation, åk 1, AUSM, Recommended

Master's Programme, ICT Innovation, åk 1, AUSY, Recommended

Master's Programme, Systems, Control and Robotics, åk 1, Recommended

Contact

Examiner
No information inserted
Course coordinator
No information inserted
Teachers
No information inserted
Contact

Jonas Mårtensson

Course syllabus as PDF

Please note: all information from the Course syllabus is available on this page in an accessible format.

Course syllabus EL1010 (Autumn 2021–)
Headings with content from the Course syllabus EL1010 (Autumn 2021–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

The course covers how feedback influences properties of dynamic system such as stability, speed of response, sensitivity and robustness. The course contains analysis and design of feedback systems with regard to these properties. In particular, the following is studied

  • basic concepts and problems: Application examples of automatic control in society, representation of dynamic system, in and output signals, differentia equation models, Laplace transform, transfer functions, block diagrams, step response, poles, zeros, linearisation and state space models
  • analysis of feedback systems: stability, root locus, the Nyquist criterion, Nyquist and Bode diagrams, speed of response, error coefficients, sensitivity and robustness
  • design of control systems with one input signal and one output signal: specifications, PID-controllers, compensation in the frequency domain, feed-forward control, time delays, state feedback, observers and pole placement
  • implementation: choice of sampling time, anti alias filters and discretisation of controllers
  • control terminology in Swedish and English.

Intended learning outcomes

After passing the course, the student shall be able to

  • formulate basic theory and definitions of important concepts in general automatic control
  • apply analysis and design methods in general automatic control

Literature and preparations

Specific prerequisites

Knowledge in differential equations and transform methods, 6 higher education credits, equivalent to completed course SF1523/SF1633/SF1682/SF1683.

Active participation in a course offering where the final examination is not yet reported in LADOK is considered equivalent to completion of the course. Registering for a course is counted as active participation. The term 'final examination' encompasses both the regular examination and the first re-examination.

Equipment

No information inserted

Literature

No information inserted

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F

Examination

  • LABD - Laboratory work, 0.5 credits, grading scale: P, F
  • LABE - Laboratory work, 1.5 credits, grading scale: P, F
  • LABF - Laboratory work, 2.0 credits, grading scale: P, F
  • TENB - Written exam, 2.0 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

Technology

Education cycle

First cycle

Add-on studies

  • EL1820 Modellering av dynamiska system
  • EL2620 Olinjär reglering
  • EL2520Reglerteknik fk
  • EL2421 Reglerteknik, projektkurs
  • EL2450 Hybrida och inbyggda reglersystem
  • EL2745 Principles of Wireless Sensor Networks
  • EL2700 Model Predictive Control
  • EL2800 Stochastic Control and Optimization

Contact

Jonas Mårtensson

Transitional regulations

The expiration module LABA can be examined through new module LABD

The expiration module LABB can be examined through new module LABE

The expiration module LABC can be examined through new module LABF

The expiration module TENA can be examined through new module TENB

Supplementary information

In this course, the EECS code of honor applies, see:
http://www.kth.se/en/eecs/utbildning/hederskodex.