Skip to main content
Till KTH:s startsida

SF2956 Topological Data Analysis 7.5 credits

Information per course offering

Termin

Information for Autumn 2024 Start 26 Aug 2024 programme students

Course location

KTH Campus

Duration
26 Aug 2024 - 27 Oct 2024
Periods
P1 (7.5 hp)
Pace of study

50%

Application code

50301

Form of study

Normal Daytime

Language of instruction

English

Course memo
Course memo is not published
Number of places

Places are not limited

Target group

Available for all master program students as long as it can be included in your programme.

Planned modular schedule
[object Object]

Contact

Examiner
No information inserted
Course coordinator
No information inserted
Teachers
No information inserted
Contact

Wojtek Chacholski (wojtek@kth.se)

Course syllabus as PDF

Please note: all information from the Course syllabus is available on this page in an accessible format.

Course syllabus SF2956 (Spring 2022–)
Headings with content from the Course syllabus SF2956 (Spring 2022–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

The course contains the following topics:

  • Kleinberg theorem about impossibility of clustering,
  • metric spaces and dendrograms,
  • classical hierarchical clustering schemes (single, complete, average, and Haussdorff linkage),
  • elements of simplicial complexes,
  • transforming data into simplicial complexes via Chech and Vietoris-Rips constructions
  • extracting homology out of data based simplicial complexes
  • persistence modules, barcoding, and feature visualization

Intended learning outcomes

After completing the course, the student shall be able to

  • use concepts, propositions and methods to solve, and present the solution of problems within topological data analysis;
  • use available software to analyze geometric data.

Literature and preparations

Specific prerequisites

  • English B / English 6
  • Completed basic course in numerical analysis (SF1544, SF1545 or equivalent)
  • Completed basic course in probability theory and statistics (SF1922, SF1914 or equivalent)

Recommended prerequisites

Completed courses corresponding to SF2935 Modern methods of statistical learning and SF2940 Probability theory.

Equipment

No information inserted

Literature

Various books and lecture notes presented on the course web page.

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

A, B, C, D, E, FX, F

Examination

  • PRO1 - Project, 7.5 credits, grading scale: A, B, C, D, E, FX, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

Mathematics

Education cycle

Second cycle

Add-on studies

No information inserted

Contact

Wojtek Chacholski (wojtek@kth.se)