The course treats first order equations. The wave equation: equation in one or several space coordinates, Huyghen’s principle. The Laplace equation: fundamental solutions, Green’s function, Dirichlet’s problem, the maximum principle, Dirichlet’s principle, introduction to Sobolev rooms. The heat eqation: initial value problem, fundamental solutions, the maximum principle.
SF2739 Partial Differential Equations 7.5 credits

Information per course offering
Course offerings are missing for current or upcoming semesters.
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus SF2739 (Autumn 2019–)Content and learning outcomes
Course contents
Intended learning outcomes
After the course the student should be able to
- formulate central definitions and theorems within the topic of the course,
- apply and generalize theorems and methods within the topic of the course,
- describe, analyze and formulate basic proofs within the topic of the course.
Literature and preparations
Specific prerequisites
Completed courses SF1683 Differential Equations and Transforms and SF1677 Foundations of Analysis.
Literature
Announced no later than 4 weeks before the start of the course on the course web page.
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- TEN1 - Examination, 7.5 credits, grading scale: A, B, C, D, E, FX, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
The examiner decides, in consultation with KTHs Coordinator of students with disabilities (Funka), about any customized examination for students with documented, lasting disability. The examiner may allow another form of examination for re-examination of individual students
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.