The course Energy Storage Systems covers the necessary technical knowledge on the fundamental principles and application areas of proven technologies and materials for energy storage solutions, together with an overview of development trends in this engineering field. There is a large need for such tightly focused course content at specific depth and breadth to deliver the condensed knowledge and wide understanding on the very important role that energy storage units are expected to play in the future energy system, including the enormous potential for innovative solutions that this field offers.
This course follows up on and directly complements previously studied courses on energy resources, energy conversion and modern power systems, where an integrated part demands a broad review of energy storage solutions and proper accent on materials technology for energy storage.
The technological aspect of the course blends together fundamental knowledge from the subject areas of mechanical engineering, energy technology, classical thermodynamics, chemical engineering, electrical engineering and power production, with a special focus on the synergy between those and on the integration aspects of various energy storage solutions in the future power system.
More specifically, the course content covers the following main subject fields:
- Kinetic and potential energy storage – pumped hydro, compressed air, flywheel, gravitation;
- Thermal energy storage as sensible heat – high- & low-enthalpy heat, cryogenic, liquid air;
- Thermal energy storage as latent heat – phase change materials;
- Electrochemical processes – electrolysis, fuel cells;
- Chemical energy – hydrogen, synthetic fuels, power-to-gas, thermochemical methods;
- Electrochemical batteries – solid state, flow battery, new technologies;
- Material challenges and necessity for further material development;
- System integration of energy storage solutions with power generation units and grid management.