The course deals with theory and algorithms for linear programming problems.
From the 1940s the simplex method, developed by Dantzig, was the only practically used method for solving linear programming problems. Khachian had in the late 1970s presented the polynomial ellipsoid method, but it had not been successful in practice.
When Karmarkar presented his interior method in 1984, all this changed. This method was polynomial and also claimed to be superior to the simplex method in practice.
Karmarkar's method lead to an "explosion" within the area of linear programming. Gill et. al. soon showed that Karmarkar's method was equivalent to a logarithmic barrier method, and the development of new interior methods was rapid. This "competition" between the simplex method and interior methods has lead to significant improvement in both types of method. The purpose of this course is to reflect this development. Some more advanced aspects of the simplex method are included, e.g., steepest edge, partial pricing, and of the interior-point methods e.g., predictor-corrector methods. In particular, we try to understand how the different methods work.