Skip to main content
Till KTH:s startsida

FSF3843 Integer programming - Practical Algorithms 7.5 credits

Information per course offering

Course offerings are missing for current or upcoming semesters.

Course syllabus as PDF

Please note: all information from the Course syllabus is available on this page in an accessible format.

Course syllabus FSF3843 (Spring 2019–)
Headings with content from the Course syllabus FSF3843 (Spring 2019–) are denoted with an asterisk ( )

Content and learning outcomes

Course contents

The course deals with theory and algorithms for linear integer programming problems and includes the theory of valid inequalities, duality and relaxations, general algorithms and special purpose algorithms. In addition, areas like model formulation, linear programming, computational complexity and polyhedral theory are treated on a relatively superficial level.

Intended learning outcomes

That the student should obtain a deep understanding of the mathematical theory and the practical algorithms for integer programming.

After completed course, the student should be able to

  • Define basic oncepts in polyhedral theory.
  • Give different ways of generating valid inequalitises.
  • Explain general methods for solving integer programs.
  • Explain some special-purpose methods for solving integer programs.
  • Explain fundamental concepts of computational complexity

Literature and preparations

Specific prerequisites

A Master degree including at least 30 university credits (hp) in in Mathematics (Calculus, Linear algebra, Differential equations and transform method), and further at least  6 hp in Mathematical Statistics, 6 hp in Numerical analysis and 6 hp in Optimization.

Suitable prerequisites are the courses SF2812 Applied Linear Optimization and SF2520 Applied Numerical Methods, or similar knowledge.

Equipment

No information inserted

Literature

Announced when the course is offered.

Examination and completion

If the course is discontinued, students may request to be examined during the following two academic years.

Grading scale

P, F

Examination

  • INL1 - Assignment, 7.5 credits, grading scale: P, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

The examination is by homework assignments and a final oral exam.

Other requirements for final grade

Homework assignments and a final oral exam.

Opportunity to complete the requirements via supplementary examination

No information inserted

Opportunity to raise an approved grade via renewed examination

No information inserted

Examiner

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

Course room in Canvas

Registered students find further information about the implementation of the course in the course room in Canvas. A link to the course room can be found under the tab Studies in the Personal menu at the start of the course.

Offered by

Main field of study

This course does not belong to any Main field of study.

Education cycle

Third cycle

Add-on studies

No information inserted

Contact

Anders Forsgren (andersf@kth.se)

Postgraduate course

Postgraduate courses at SCI/Mathematics