Hoppa till huvudinnehållet
Till KTH:s startsida Till KTH:s startsida

List of journal publications

ROLF SANDSTRÖM, LIST OF PUBLICATIONS - JOURNALS:

h=39 (Google Scholar)

 

[254] R. Sandström, Basic Modelling of General Strength and Creep Properties of Alloys, Crystals, 14 (2023).

[253] R. Sandström, Creep at low stresses in aluminium (Harper-Dorn) and in an austenitic stainless steel with a stress exponent of 1, Materials Today Communications, 36 (2023).

[252] R. Sandström, Basic Analytical Modeling of Creep Strain Curves, Materials, 16 (2023).

[251] R. Sandström, Primary creep at low stresses in copper, Materials Science and Engineering: A, (2023).

[250] R. Sandström, Cavitation during creep-fatigue loading, Mater High Temp, 40 (2023) 174–183

[249] J.-J. He, R. Sandström, J. Zhang, H.-Y. Qin, The role of strength distributions for premature creep failure, Journal of Materials Research and Technology, 25 (2023) 3444-3457.

[248] J.-J. He, R. Sandström, J. Zhang, H.-Y. Qin, Application of soft constrained machine learning algorithms for creep rupture prediction of an austenitic heat resistant steel Sanicro 25, Journal of Materials Research and Technology, 22 (2023) 923-937.

[247] J.-J. He, R. Sandström, J. Zhang, Evaluating creep rupture life in austenitic and martensitic steels with soft-constrained machine learning, Journal of Materials Research and Technology, 27 (2023) 5165-5176.

[246] R. Sandström, J.-J. He, Error estimates in extrapolation of creep rupture data and its application to an austenitic stainless steel, Mater High Temp, 39 (2022) 181-191.

[245] R. Sandström, J.-J. He, Prediction of creep ductility for austenitic stainless steels and copper, Mater High Temp, 39 (2022) 427-435.

[244] R. Sandström, Basic Creep-Fatigue Models Considering Cavitation, Transactions of the Indian National Academy of Engineering, 7 (2022) 583-591.

[243] R. Sandström, Formation of Cells and Subgrains and Its Influence on Properties, Metals, 12 (2022).

[242] J. He, R. Sandström, Creep rupture prediction using constrained neural networks with error estimates, Mater High Temp, (2022) 1-13.

[241] R. Sandström, J. Zhang, Modeling the Creep of Nickel, Journal of Engineering Materials and Technology, 143 (2021).

[240] R. Sandström, F. Sui, Modeling of tertiary creep in copper at 215 and 250 °c, Journal of Engineering Materials and Technology, Transactions of the ASME, 143 (2021).

[239] R. Sandström, J. He, Error Estimates in Extrapolation of Creep Rupture Data: Applied to an Austenitic Stainless Steel, ASME 2021 Pressure Vessels & Piping Conference, (2021).

[238] R. Sandström, C.M. Lousada, The role of binding energies for phosphorus and sulphur at grain boundaries in copper, J Nucl Mater, 544 (2020) 152682.

[237] K. Chen, J. Zhang, Y. Chen, X. Chen, Z. Wang, R. Sandström, Slow strain rate tensile tests on notched specimens of as-cast pure Cu and Cu–Fe–Co alloys, J Alloy Compd, 822 (2020) 153647.

[236] K. Chen, S. Pan, X. Chen, Z. Wang, R. Sandström, Optimisation of deformation properties in as-cast copper by microstructural engineering. Part II. Mechanical properties, J Alloy Compd, 812 (2020) 151910.

[235] F. Sui, R. Sandström, Creep strength contribution due to precipitation hardening in copper–cobalt alloys, J Mater Sci, 54 (2019) 1819-1830.

[234] J. He, R. Sandström, Application of Fundamental Models for Creep Rupture Prediction of Sanicro 25 (23Cr25NiWCoCu), Crystals, 9 (2019).

[233] S. Xia, C.M. Lousada, H. Mao, A.C. Maier, P.A. Korzhavyi, R. Sandström, Y. Wang, Y. Zhang, Erratum: Nonlinear oxidation behavior in pure Ni and Ni-containing entropic alloys (Front. Mater., (2018) 5, 53, 10.3389/fmats.2018.00053), Frontiers in Materials, 5 (2018).

[232] S. Xia, C.M. Lousada, H. Mao, A.C. Maier, P.A. Korzhavyi, R. Sandström, Y. Wang, Y. Zhang, Nonlinear Oxidation Behavior in Pure Ni and Ni-Containing Entropic Alloys, Frontiers in Materials, 5 (2018).

[231] F. Sui, R. Sandström, R. Wu, Creep tests on notched specimens of copper, J Nucl Mater, 509 (2018) 62-72.

[230] F. Sui, R. Sandström, Basic modelling of tertiary creep of copper, J Mater Sci, 53 (2018) 6850-6863.

[229] S. Spigarelli, R. Sandström, Basic creep modelling of aluminium, Materials Science and Engineering: A, 711 (2018) 343-349.

[228] A.H. Delandar, R. Sandström, P. Korzhavyi, The role of glide during creep of copper at low temperatures, Metals, 8 (2018).

[227] K. Chen, X. Chen, Z. Wang, H. Mao, R. Sandström, Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. microstructure, J Alloy Compd, 763 (2018) 592-605.

[226] R. Sandström, Formation of a dislocation back stress during creep of copper at low temperatures, Materials Science and Engineering A, 700 (2017) 622-630.

[225] Y. Li, P.A. Korzhavyi, R. Sandström, C. Lilja, Impurity effects on the grain boundary cohesion in copper, Physical Review Materials, 1 (2017) 070602.

[224] J. He, R. Sandström, S. Notargiacomo, Low-Cycle Fatigue Properties of a Nickel-Based Superalloy Haynes 282 for Heavy Components, J Mater Eng Perform, 26 (2017) 2257-2263.

[223] J. He, R. Sandström, Basic modelling of creep rupture in austenitic stainless steels, Theoretical and Applied Fracture Mechanics, 89 (2017) 139-146.

[222] F. Sui, R. Sandström, Slow strain rate tensile tests on notched specimens of copper, Materials Science and Engineering: A, 663 (2016) 108-115.

[221] R. Sandström, R. Wu, J. Hagström, Grain boundary sliding in copper and its relation to cavity formation during creep, Materials Science and Engineering: A, 651 (2016) 259-268.

[220] R. Sandström, The role of cell structure during creep of cold worked copper, Materials Science and Engineering: A, 674 (2016) 318-327.

[219] R. Sandström, Influence of phosphorus on the tensile stress strain curves in copper, J Nucl Mater, 470 (2016) 290-296.

[218] R. Sandström, Fundamental Models for Creep Properties of Steels and Copper, Trans Indian Inst Met, 69 (2016) 197-202.

[217] A.F.M. Pérez, M. Breda, I. Calliari, G.Y.P. Medina, R. Sandström, Detrimental cr-rich phases precipitation on SAF 2205 Duplex stainless steels welds after heat treatment, Soldagem e Inspecao, 21 (2016) 165-171.

[216] J. He, R. Sandström, Creep cavity growth models for austenitic stainless steels, Materials Science and Engineering: A, 674 (2016) 328-334.

[215] J. He, R. Sandström, Formation of creep cavities in austenitic stainless steels, J Mater Sci, 51 (2016) 6674-6685.

[214] J. He, R. Sandström, Modelling grain boundary sliding during creep of austenitic stainless steels, J Mater Sci, 51 (2016) 2926-2934.

[213] A.H. Delandar, S.M.H. Haghighat, P. Korzhavyi, R. Sandström, Dislocation dynamics modeling of plastic deformation in single-crystal copper at high strain rates, International Journal of Materials Research, 107 (2016) 988-995.

[212] S. Vujic, R. Sandstrom, C. Sommitsch, Precipitation evolution and creep strength modelling of 25Cr20NiNbN austenitic steel, Mater High Temp, 32 (2015) 607-618.

[211] P.A. Korzhavyi, R. Sandström, First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength, Materials Science and Engineering: A, 626 (2015) 213-219.

[210] R. Wu, N. Pettersson, Å. Martinsson, R. Sandström, Cell structure in cold worked and creep deformed phosphorus alloyed copper, Mater Charact, 90 (2014) 21-30.

[209] R. Sandström, P. Korzhavyi, Use of elastic constants based on ab initio computation in materials optimisation of austenitic stainless steels, Canadian Metallurgical Quarterly, 53 (2014) 282-291.

[208] J. Pilhagen, H. Sieurin, R. Sandström, Fracture toughness of a welded super duplex stainless steel, Materials Science and Engineering: A, 606 (2014) 40-45.

[207] J. Pilhagen, R. Sandström, Delaminations by cleavage cracking in duplex stainless steels at sub-zero temperatures, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 45 (2014) 1327-1337.

[206] J. Pilhagen, R. Sandström, Influence of nickel on the toughness of lean duplex stainless steel welds, Materials Science and Engineering: A, 602 (2014) 49-57.

[205] A.F.M. Pérez, R. Sandström, I. Calliari, F.A.R. Valdés, Sigma phase precipitation on welded SAF 2205 Duplex Stainless Steels after isothermal heat treatment, Journal of the Society for American Music, 1611 (2014).

[204] P.A. Korzhavyi, R. Sandström, Monovacancy in copper: Trapping efficiency for hydrogen and oxygen impurities, Comp Mater Sci, 84 (2014) 122-128.

[203] H. Izadi, R. Sandstrom, A.P. Gerlich, Grain Growth Behavior and Hall-Petch Strengthening in Friction Stir Processed Al 5059, Metallurgical and Materials Transactions A, (2014).

[202] R. Wu, R. Sandström, L.Z. Jin, Creep crack growth in phosphorus alloyed oxygen free copper, Materials Science and Engineering A, 583 (2013) 151-160.

[201] R. Sandström, R. Wu, Influence of phosphorus on the creep ductility of copper, J Nucl Mater, 441 (2013) 364-371.

[200] R. Sandström, H. Östling, L.Z. Jin, Modelling of creep in friction stir welded copper, Materials Research Innovations, 17 (2013) 350-354.

[199] R. Sandström, M. Farooq, J. Zurek, Basic creep models for 25Cr20NiNbN austenitic stainless steels, Materials Research Innovations, 17 (2013) 355-359.

[198] J. Pilhagen, R. Sandström, Loss of constraint during fracture toughness testing of duplex stainless steels, Eng Fract Mech, 99 (2013) 239-250.

[197] J. Zander, R. Sandström, Materials selection with several sizing variables taking environmental impact into account, Materials and Design, 37 (2012) 243-250.

[196] S. Vujic, M. Farooq, B. Sonderegger, R. Sandstrom, C. Sommitsch, Numerical modelling and validation of precipitation kinetics in advanced creep resistant austenitic steel, Computer Methods in Materials Science, 12 (2012) 175-182.

[195] R. Sandström, J. Hallgren, The role of creep in stress strain curves for copper, J Nucl Mater, 422 (2012) 51-57.

[194] R. Sandström, M. Farooq, B. Ivarsson, Influence of particle formation during long time ageing on mechanical properties in the austenitic stainless steel 310, Mater High Temp, 29 (2012) 1-7.

[193] R. Sandstrom, Basic model for primary and secondary creep in copper, Acta Mater, 60 (2012) 314-322.

[192] M. Randelius, R. Sandström, A. Melander, Fatigue strength of conventionally cast tool steels and its dependence of carbide microstructure, Steel Res Int, 83 (2012) 83-90.

[191] A. Martinsson, R. Sandström, Hydrogen depth profile in phosphorus-doped, oxygen-free copper after cathodic charging, J Mater Sci, 47 (2012) 6768-6776.

[190] M. Mahdavi Shahri, R. Sandström, W. Osikowicz, Critical distance method to estimate the fatigue life time of friction stir welded profiles, Int J Fatigue, 37 (2012) 60-68.

[189] M. Mahdavi Shahri, R. Sandström, Effective notch stress and critical distance method to estimate the fatigue life of T and overlap friction stir welded joints, Engineering Failure Analysis, 25 (2012) 250-260.

[188] M. Mahdavi Shahri, R. Sandström, Influence of fabrication stresses on fatigue life of friction stir welded aluminium profiles, J Mater Process Tech, 212 (2012) 1488-1494.

[187] M. Mahdavi Shahri, T. Höglund, R. Sandström, Eurocode 9 to estimate the fatigue life of friction stir welded aluminium panels, Engineering Structures, 45 (2012) 307-313.

[186] L.Z. Jin, R. Sandström, Numerical simulation of residual stresses for friction stir welds in copper canisters, Journal of Manufacturing Processes, 14 (2012) 71-81.

[185] M. Farooq, R. Sandström, M. Lundberg, Precipitation during long time ageing in the austenitic stainless steel 310, Mater High Temp, 29 (2012) 8-16.

[184] M. Farooq, R. Sandstrom, Influence of long time ageing on ductility and toughness in the stainless steel 310 in the presence of banded microstructure, Metallurgia Italiana, 104 (2012) 33-38.

[183] J. Zander, R. Sandstrom, Materials selection for a cooling plate using control area diagrams, Mater Design, 32 (2011) 4866-4873.

[182] J. Zander, R. Sandstrom, Merit exponents and control area diagrams in materials selection, Mater Design, 32 (2011) 4850-4856.

[181] M.M. Shahri, R. Sandstrom, Fatigue analysis of friction stir welded aluminium profile using critical distance, Int J Fatigue, 32 (2010) 302-309.

[180] H. Magnusson, R. Sandstrom, Modeling Creep Strength of Welded 9 to 12 Pct Cr Steels, Metall Mater Trans A, 41A (2010) 3340-3347.

[179] J. Zander, R. Sandstrom, Modelling technological properties of commercial wrought aluminium alloys, Mater Design, 30 (2009) 3752-3759.

[178] H. Sieurin, E.M. Westin, M. Liljas, R. Sandstrom, Fracture Toughness of Welded Commercial Lean Duplex Stainless Steels, Weld World, 53 (2009) R24-R33.

[177] H. Magnusson, R. Sandstrom, Influence of aluminium on creep strength of 9-12% Cr steels, Mat Sci Eng a-Struct, 527 (2009) 118-125.

[176] L.Z. Jin, R. Sandstrom, Non-stationary creep simulation with a modified Armstrong-Frederick relation applied to copper, Comp Mater Sci, 46 (2009) 339-346.

[175] J. Zander, R. Sandstrom, One parameter model for strength properties of hardenable aluminium alloys, Mater Design, 29 (2008) 1540-1548.

[174] R. Sandstrom, H.C.M. Andersson, Creep in phosphorus alloyed copper during power-law breakdown, J Nucl Mater, 372 (2008) 76-88.

[173] R. Sandstrom, H.C.M. Andersson, The effect of phosphorus on creep in copper, J Nucl Mater, 372 (2008) 66-75.

[172] L.Z. Jin, R. Sandstrom, Creep of copper canisters in power-law breakdown, Comp Mater Sci, 43 (2008) 403-416.

[171] S.R. Holdsworth, M. Askins, A. Baker, E. Gariboldi, S. Holmstrom, A. Klenk, M. Ringel, G. Merckling, R. Sandstrom, M. Schwienheer, S. Spigarelli, Factors influencing creep model equation selection, Int J Pres Ves Pip, 85 (2008) 80-88.

[170] J. Zander, R. Sandstrom, L. Vitos, Modelling mechanical properties for non-hardenable aluminium alloys, Comp Mater Sci, 41 (2007) 86-95.

[169] H. Sieurin, R. Sandstrom, Sigma phase precipitation in duplex stainless steel 2205, Mat Sci Eng a-Struct, 444 (2007) 271-276.

[168] H. Magnusson, R. Sandstrom, Creep strain modeling of 9 to 12 pct Cr steels based on microstructure evolution, Metall Mater Trans A, 38A (2007) 2033-2039.

[167] H. Magnusson, R. Sandstrom, The role of dislocation climb across particles at creep conditions in 9 to 12 pct Cr steels, Metall Mater Trans A, 38A (2007) 2428-2434.

[166] L.Z. Jin, R. Sandstrom, Steady non-Newtonian flows in copper and iron aluminide at elevated temperatures, J Mater Process Tech, 189 (2007) 428-434.

[165] M. Ericsson, L.Z. Jin, R. Sandstrom, Fatigue properties of friction stir overlap welds, Int J Fatigue, 29 (2007) 57-68.

[164] H.C.M. Andersson, R. Sandstrom, D. Debord, Low cycle fatigue of four stainless steels in 20% CO-80% H-2, Int J Fatigue, 29 (2007) 119-127.

[163] H. Sieurin, J. Zander, R. Sandstrom, Modelling solid solution hardening in stainless steels, Mat Sci Eng a-Struct, 415 (2006) 66-71.

[162] H. Sieurin, R. Sandstrom, E.M. Westin, Fracture toughness of the lean duplex stainless steel LDX 2101, Metall Mater Trans A, 37A (2006) 2975-2981.

[161] H. Sieurin, R. Sandstrom, Austenite reformation in the heat-affected zone of duplex stainless steel 2205, Mat Sci Eng a-Struct, 418 (2006) 250-256.

[160] H. Sieurin, R. Sandstrom, Fracture toughness of a welded duplex stainless steel, Eng Fract Mech, 73 (2006) 377-390.

[159] M. Eskner, R. Sandstrom, Mechanical properties and temperature dependence of an air plasma-sprayed NiCoCrAlY bondcoat, Surf Coat Tech, 200 (2006) 2695-2703.

[158] M. Ericsson, R. Sandstrom, Fatigue crack propagation in friction stir welded and parent AA6082, Steel Res Int, 77 (2006) 450-455.

[157] R. Wu, R. Sandstrom, F. Seitisleam, Low temperature creep crack growth in low alloy reactor pressure vessel steel, J Nucl Mater, 336 (2005) 279-290.

[156] R. Sandstrom, P. Langenberg, H. Sieurin, Erratum: "Analysis of the brittle fracture avoidance model for pressure vessels in European standard" (Intenational Journal of Pressure Vessels and Piping (2005) vol. 82 (872-881) doi: 10.1016/ j.ijpvp.2005.06.004), Int J Pres Ves Pip, 82 (2005) 941.

[155] R. Sandstrom, P. Langenberg, H. Sieurin, Analysis of the brittle fracture avoidance model for pressure vessels in European standard (vol 82, pg 872, 2005), Int J Pres Ves Pip, 82 (2005) 941-941.

[154] M. Eskner, R. Sandstrom, Mechanical property evaluation using the small punch test, J Test Eval, 33 (2005) 282-289.

[153] Z.Y. Zhang, R. Sandstrom, L.N. Wang, Modelling of swelling of Fe-Cu compacts sintered at temperatures above the copper melting point, J Mater Process Tech, 152 (2004) 131-135.

[152] Z. Zhang, R. Sandstrom, Fe-Mn-Si master alloy steel by powder metallurgy processing, J Alloy Compd, 363 (2004) 194-202.

[151] Z. Zhang, K. Frisk, A. Salwen, R. Sandstrom, Mechanical properties of Fe-Mo-Mn-Si-C sintered steels, Powder Metall, 47 (2004) 239-246.

[150] R. Wu, R. Sandstrom, F. Seitisleam, Influence of extra coarse grains on the creep properties of 9 percent CrMoV (P91) steel weldment, J Eng Mater-T Asme, 126 (2004) 87-94.

[149] R. Sandstrom, P. Langenberg, H. Sieurin, New brittle fracture model for the European pressure vessel standard, Int J Pres Ves Pip, 81 (2004) 837-845.

[148] M. Eskner, R. Sandstrom, Measurement of the elastic modulus of a plasma-sprayed thermal barrier coating using spherical indentation, Surf Coat Tech, 177 (2004) 165-171.

[147] Z.Y. Zhang, R. Sandstrom, K. Frisk, A. Salwen, Characterization of intermetallic Fe-Mn-Si powders produced by casting and mechanical ball milling, Powder Technol, 137 (2003) 139-147.

[146] R. Sandstrom, A procedure for extended extrapolation of creep rupture data, J Test Eval, 31 (2003) 58-64.

[145] M. Eskner, R. Sandstrom, Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique, Surf Coat Tech, 165 (2003) 71-80.

[144] M. Ericsson, R. Sandstrom, Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG, Int J Fatigue, 25 (2003) 1379-1387.

[143] U. Bohnenkamp, R. Sandstrom, G. Grimvall, Electrical resistivity of steels and face-centered-cubic iron, J Appl Phys, 92 (2002) 4402-4407.

[142] C.S. Wiesner, S.J. Garwood, R. Sandstrom, D.M. Street, K.J. Coulson, Background to requirements for the prevention of brittle fracture in the European standards for unfired pressure vessels(prEN 13445) and metallic industrial piping (prEN 13480), Int J Pres Ves Pip, 78 (2001) 391-399.

[141] P. Olafsson, R. Sandstrom, Calculations of electrical resistivity for Al-Cuand Al-Mg-Sialloys, Mater Sci Tech Ser, 17 (2001) 655-662.

[140] M. Ericsson, R. Sandstrom, Fatigue performance of friction stir welded AlMgSi-alloy 6082, Aluminium (Germany), 77 (2001) 572-575.

[139] H.C.M. Andersson, R. Sandstrom, Creep crack growth in service-exposed weld metal of 2.25Cr1Mo, Int J Pres Ves Pip, 78 (2001) 749-755.

[138] R. Wu, F. Seitisleam, R. Sandstrom, Creep crack growth in a high strength low alloy steel at 360 °C, Key Engineering Materials, 171-174 (2000) 139-146.

[137] W.J. Tang, R. Sandstrom, S. Miyazaki, Phase equilibria in the pseudobinary Ti0.5Ni0.5-Ti0.5Cu0.5 system, J Phase Equilib, 21 (2000) 227-234.

[136] W. Tang, R. Sandstrom, Z.G. Wei, S. Miyazaki, Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys, Metall Mater Trans A, 31 (2000) 2423-2430.

[135] M. Ericsson, R. Sandstrom, J. Hagstrom, Fatigue of friction stir welded AlMgSi-alloy 6082, Mater Sci Forum, 331-3 (2000) 1787-1792.

[134] M. Ericsson, R. Sandström, Fatigue of friction stir welded AlMgSi-alloy 6082, Materials Science Forum, 331 (2000) II/.

[133] J. Eliasson, R. Sandstrom, Proof strength values for austenitic stainless steels at elevated temperatures, Steel Res, 71 (2000) 249-254.

[132] J. Eliasson, A. Gustafson, R. Sandstrom, Kinetic modelling of the influence of particles on creep strength, Key Eng Mat, 171-1 (2000) 277-284.

[131] U. Bohnenkamp, R. Sandstrom, Evaluation of the elastic modulus of steels, Steel Res, 71 (2000) 94-99.

[130] U. Bohnenkamp, R. Sandstrom, Evaluation of the density of steels, Steel Res, 71 (2000) 88-93.

[129] U. Bohnenkamp, R. Sandstrom, Evaluation of the electrical resistivity of steels, Steel Res, 71 (2000) 410-416.

[128] X.X. Yao, R. Sandstrom, T. Stenqvist, Strain-controlled fatigue of a braze clad Al-Mn-Mg alloy at room temperature and at 75 and 180 °C, Materials Science and Engineering A, 267 (1999) 1-6.

[127] X.X. Yao, R. Sandstrom, Applicability of life prediction methods to the low cycle fatigue of braze clad AlMn1.0Mg0.5 alloys, Int J Fatigue, 21 (1999) 1003-1006.

[126] Z.G. Wei, R. Sandstrom, Characterization of the phase transformations in shape-memory alloys by modulated differential scanning calorimetry, Materials Science and Engineering A, 273-275 (1999) 352-356.

[125] W. Tang, B. Sundman, R. Sandstrom, C. Qiu, New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system, Acta Mater, 47 (1999) 3457-3468.

[124] R. Sandstrom, L. Linde, Precision in the extrapolation of creep rupture data, J Test Eval, 27 (1999) 203-210.

[123] R. Sandstrom, Extrapolation of creep strain data for pure copper, J Test Eval, 27 (1999) 31-35.

[122] A. From, R. Sandstrom, Influence of mixed grain size distributions on the toughness in high and extra high strength steels, Mater Charact, 42 (1999) 111-122.

[121] Z.G. Wei, R. Sandstrom, S. Miyazaki, Shape memory materials and hybrid composites for smart systems - Part II Shape-memory hybrid composites, J Mater Sci, 33 (1998) 3763-3783.

[120] Z.G. Wei, R. Sandstrom, S. Miyazaki, Shape-memory materials and hybrid composites for smart systems - Part I Shape-memory materials, J Mater Sci, 33 (1998) 3743-3762.

[119] P.J. Henderson, R. Sandstrom, Low temperature creep ductility of OFHC copper, Materials Science and Engineering A, 246 (1998) 143-150.

[118] A. From, R. Sandstrom, Assessment of banding in steels by using advanced image analysis, Mater Charact, 41 (1998) 11-26.

[117] H. Engstrom, R. Sandstrom, Strain controlled fatigue testing of braze clad AA3005 at 20 and 200 deg C, Aluminium (Germany), 74 (1998) 676-678.

[116] Z.G. Wei, R. Sandstrom, Role of short range disorder in long range ordered matrix: Quenched-in vacancies on the martensitic transformation - Comments, Scripta Mater, 37 (1997) 1727-1732.

[115] A. Thuvander, R. Blom, L.Z. Jin, R. Sandstrom, Material property database for heat treatment simulation of tool materials, Steel Res, 68 (1997) 125-131.

[114] P. Olafsson, R. Sandstrom, A. Karlsson, Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys, J Mater Sci, 32 (1997) 4383-4390.

[113] J. Komenda, R. Sandstrom, M. Tukiainen, Multiple regression analysis of Jominy hardenability data for boron treated steels, Steel Res, 68 (1997) 132-137.

[112] J. Hagstrom, R. Sandstrom, Mechanical properties of welded joints in thin walled aluminium extrusions, Sci Technol Weld Joi, 2 (1997) 199-208.

[111] A. From, R. Sandstrom, Image analysis of lamellar structures in steel using orientation distribution functions, Praktische Metallographie, 34 (1997) 71-72.

[110] A. From, R. Sandstrom, SEM-based image analysis of recrystallized fractions, Praktische Metallographie, 34 (1997) 110-111.

[109] R. Wu, R. Sandstrom, Strain dependence of creep cavity nucleation in low alloy and 12%Cr steels, Mater Sci Tech Ser, 12 (1996) 405-415.

[108] R. Wu, R. Sandstrom, Carbide coarsening during creep in 12 percent CrMoV steel, J Eng Mater-T Asme, 118 (1996) 485-492.

[107] R. Sandstrom, Creep rupture strengths up to 100 000 hours for aluminium alloys, Aluminium (Germany), 72 (1996) 910-917.

[106] P. Olafsson, R. Sandstrom, A. Karlsson, Electrical conductivity of aluminium alloys, Materials Science Forum Aluminium Alloys: Their Physical and Mechanical Properties, Pts 1-3, 217-222 (1996) 981-986.

[105] J. Hagstrom, R. Sandstrom, Fatigue properties of welded T-joints in thin-walled aluminium profiles, Materials Science Forum, 217-222 (1996) 1727-1732.

[104] J. Hagstrom, R. Sandstrom, Fatigue properties of welded T-joints in thin-walled aluminium profiles, Mater Sci Forum, 217 (1996) 1727-1732.

[103] A. From, R. Sandstrom, Separate assessment of porosity and uncombined carbon in cemented carbides, Int J Refract Met H, 14 (1996) 407-417.

[102] A. From, R. Sandstrom, Analysis of clustered dispersions of uncombined carbon in cemented carbide, Int J Refract Met H, 14 (1996) 393-405.

[101] R. Wu, R. Sandstrom, Creep Cavity Nucleation and Growth in 12cr-Mo-V Steel, Mater Sci Tech Ser, 11 (1995) 579-588.

[100] W. Tang, R. Sandstrom, Parameters in constitutive relations for TiNi shape memory alloys, Journal of Applied Biomechanics 10 (1995) 26-35.

[99] W. Tang, R. Sandstrom, Limitations of constitutive relations for TiNi shape memory alloys, J Phys Iv, 5 (1995) 185-190.

[98] J. Storesund, R. Sandstrom, Influence of post weld heat treatment on impact toughness properties of 1Cr0.5Mo and 2.25Cr1Mo steels, Steel Res, 66 (1995) 117-123.

[97] P. Ólafsson, R. Sandström, Å. Karlsson, Electrical Conductivity of Aluminium-alloys, Mater Sci Forum, 217 (1995) 981-986.

[96] L. Linde, R. Sandstrom, J. Orr, W. Rohde, J. Lindblom, An improved assessment method for the temperature dependence of yield strength values, Steel Res, 66 (1995) 27-30.

[95] J. Komenda, R. Sandstrom, Quantitative characterization of weld simulated structures in duplex stainless steel SAF 2205, Acta Stereologica (Yugoslavia), 14 (1995) 29-34.

[94] J. Eliasson, R. Sandstrom, Applications of aluminium matrix composites, Key Engineering Materials, 104-107 (1995) 3-36.

[93] J. Eliasson, R. Sandstrom, Material selection and grade optimization applied to aluminum matrix composites, J Mater Eng Perform, 4 (1995) 358-367.

[92] J. Eliasson, R. Sandstrom, Analysis of the coherence of published data on aluminum matrix composites, J Test Eval, 23 (1995) 288-294.

[91] R. Wu, R. Sandstrom, J. Storesund, Creep Strain Behavior in a 12-Percent-Crmov Steel, Mater High Temp, 12 (1994) 277-283.

[90] S.T. Tu, R. Wu, R. Sandstrom, Design against creep failure for weldments in 0.5Cr0.5Mo0.25V pipe, Int J Pres Ves Pip, 58 (1994) 345-354.

[89] S.T. Tu, R. Sandstrom, The evaluation of weldment creep strength reduction factors by experimental and numerical simulations, Int J Pres Ves Pip, 57 (1994) 335-344.

[88] J. Storesund, R. Sandstrom, Influence of postweld heat treatment on creep properties of 1Cr0.5Mo and 2.25Cr1Mo weldments, Mater High Temp, 12 (1994) 269-276.

[87] R. Sandstrom, S.T. Tu, The Effect of Multiaxiality on the Evaluation of Weldment Strength Reduction Factors in High-Temperature Creep, J Press Vess-T Asme, 116 (1994) 76-80.

[86] L.Z. Jin, R. Sandstrom, Evaluation of Machinability Data, J Test Eval, 22 (1994) 204-211.

[85] L.-Z. Jin, R. Sandström, Machinability data applied to materials selection, Mater Design, 15 (1994) 339-346.

[84] R. Wu, J. Storesund, R. Sandstrom, Influence of Postweld Heat-Treatment on Creep-Properties of 1cr-0.5mo Welded-Joints, Mater Sci Tech Ser, 9 (1993) 773-780.

[83] W. Tang, R. Sandstrom, Analysis of the influence of cycling on TiNi shape memory alloy properties, Materials and Design, 14 (1993) 103-113.

[82] R. Sandstrom, J.O. Osterberg, M. Nylen, Deformation-Behavior during Low-Cycle Fatigue Testing of 60sn-40pb Solder, Mater Sci Tech Ser, 9 (1993) 811-819.

[81] R. Sandstrom, Creep Rupture Data for Aluminium Alloys. I, Aluminium (Germany), 69 (1993) 263-264.

[80] R. Sandstrom, Creep Rupture Data for Aluminium Alloys. II, Aluminium (Germany), 69 (1993) 361-363.

[79] R. Sandstrom, Creep Rupture Data for Aluminium Alloys. III, Aluminium (Germany), 69 (1993) 458-461.

[78] J. Komenda, R. Sandstrom, Assessment of pearlite banding using automatic image analysis: application to hydrogen-induced cracking, Mater Charact, 31 (1993) 143-153.

[77] J. Komenda, R. Sandstrom, Automatic assessment of a two-phase structure in the duplex stainless-steel SAF 2205, Mater Charact, 31 (1993) 155-165.

[76] H. Engström, R. Sandström, Evaluation of High Temperature Strength Values of Aluminium Alloys, Aluminium, 69 (1993) 1007-1013.

[75] R. Wu, J. Storesund, R. Sandstrom, E. von Walden, Creep Properties of 1Cr0.5Mo Steel Welded Joints With Controlled Microstructures, Welding in the World (UK), 30 (1992) 329-336.

[74] R. Wu, R. Sandstrom, J. Storesund, Creep-Behavior of 2.25cr1mo Steel from a Service-Exposed Header, Mater High Temp, 10 (1992) 164-170.

[73] R. Wu, R. Sandstrom, J. Storesund, Through-Thickness Creep Damage in a Service-Exposed Header of 2.25cr1mo Steel, Mater High Temp, 10 (1992) 154-163.

[72] R. Sandstrom, P. Widestig, High Temperature Yield and Tensile Strengths of Aluminium Alloys, Aluminium (Germany), 68 (1992) 330-333.

[71] R. Sandstrom, G. Engberg, B. Ivarsson, 12-Percent Cr Steels Produced by Powder-Metallurgy - Creep-Properties and Morphology, Distribution and Composition of Precipitates, Mater High Temp, 10 (1992) 33-38.

[70] R. Sandstrom, Aluselect - en europeisk databas för aluminiumlegeringar, Aluminium, 92 (1992) 8-9.

[69] R. Sandstrom, Merit parameters in materials optimization, Materials and Design, 13 (1992) 131-137.

[68] R. Sandstrom, Control area diagrams in materials optimization, Materials and Design, 13 (1992) 195-202.

[67] H. Engstrom, R. Sandstrom, Evaluation of High Temperature Strength Values of Aluminium Alloys, Aluminium, 69 (1992) 1007-1013.

[66] W. Tang, J. Cederstrom, R. Sandstrom, Property Database for the Development of Shape Memory Alloy Applications, J Phys Iv, 1 (1991) 129-134.

[65] J. Storesund, R. Sandstrom, Interaction of creep damage and low cycle fatique damage in a 1Cr0.5Mo steel, Isij Int, 30 (1990) 875-884.

[64] P. Schonholzer, R. Sandstrom, E. Moosavi, ALUSELECT - Werkstoffdaten für Aluminiumlegierungen, Swiss Material, 2 (1990) 25-25.

[63] M. Yu, R. Sandstrom, The Influence of Carbon and Nitrogen on the Creep Characteristics of Avesta 253 MA Steel, Acciaio Inossid., 56 (1989) 4-16.

[62] R. Sandstrom, J. Engstrom, J.O. Nilsson, A. Nordgren, Elevated temperature low-cycle fatigue of the austenitic stainless steels type 316 and 253MA. Influence of microstructure and damage mechanisms, High Temp Technol, 7 (1989) 2-10.

[61] M. Yu, R. Sandstrom, Influence of cerium on the creep properties of the austenitic stainless steel 253MA, High Temp Technol, 6 (1988) 153-157.

[60] M. Yu, R. Sandstrom, Influence of carbon and nitrogen content on the creep properties of the austenitic stainless steel 253MA, Scand J Metall, 17 (1988) 156-167.

[59] R. Sandstrom, R. Lagneborg, Development of Metallic Materials and Its Significance for Swedish Industry, Scand J Metall, 17 (1988) 108-119.

[58] R. Sandström, Systematisk urval av aluminiumlegeringar, Aluminium Scandinavia 2/88, 88 (1988).

[57] J.O. Nilsson, R. Sandstrom, Influence of temperature and microstructure on creep-fatigue of alloy 800H, High Temp Technol, 6 (1988) 181-186.

[56] B. Grahn, R. Sandstrom, Corrosion Data for Materials Selection, Scand J Metall, 17 (1988) 168-181.

[55] M. Yu, R. Sandstrom, B. Lehtinen, C. Westman, Formation of precipitates in the austenitic stainless steel 253MA during creep, Scand J Metall, 16 (1987) 154-163.

[54] R. Sandstrom, Minimum Usage Temperatures for Ferritic Steels, Scand J Metall, 16 (1987) 242-252.

[53] S. Hertzman, R. Sandstrom, J. Wale, Creep damage in welded joints of 0.5CrMoV steel, High Temp Technol, 5 (1987) 33-39.

[52] R. Sandstrom, B. Ivarsson, Influence of scatter in yield stresses on design stresses at elevated temperature, Materials and Design, 7 (1986) 95-100.

[51] R. Sandstrom, B. Grahn, The assessment and evaluation of property data for materials selection purposes, Materials and Design, 7 (1986) 198-204.

[50] A. Sandberg, R. Sandstrom, Static Recrystallization and Hot Ductility of Molybdenum-Alloyed and Nitrogen-Alloyed Austenitic Stainless-Steels in Association with 2-Step and Multistep Deformation, Mater Sci Tech Ser, 2 (1986) 926-937.

[49] A. Sandberg, R. Sandstrom, Recrystallization of Molybdenum-Alloyed and Nitrogen-Alloyed Austenitic Stainless-Steels after Hot-Working, Mater Sci Tech Ser, 2 (1986) 917-925.

[48] L. Karlsson, R. Sandstrom, Evaluation of three-dimensional size distributions of inclusions, Metallography, 19 (1986) 143-176.

[47] J. Bollerup, S. Hertzman, P.B. Ludvigsen, R. Sandstrom, E. von Walden, Cavitation in new and service-exposed 1Cr-0.5Mo steel, High Temp Technol, 4 (1986) 3-11.

[46] R. Sandstrom, L.E. Larsson, K. Gott, Evaluation of the 3D residual stress field from X-ray diffraction measurements on weldments of A533 heavy plate, Nucl Eng Des, 86 (1985) 315-325.

[45] R. Sandstrom, S. Karlsson, S. Modin, Residual lifetime of creep-deformed material. microstructural changes occurring during creep of a 12% CrMoVW steel, High Temp Technol, 3 (1985) 71-78.

[44] R. Sandstrom, Research Into Materials--From the Users' Viewpoint, Jernkontorets Ann., 169 (1985) 22-25.

[43] R. Sandstrom, An approach to systematic materials selection, Materials and Design, 6 (1985) 328-338.

[42] P. Öfverbeck, B. Ivarsson, R. Sandstrom, G. Östberg, Statistical evaluation of elevated temperature minimum yield/proof stress values for design purposes, Int J Pres Ves Pip, 18 (1985) 135-160.

[41] H. Chandrasekaran, S. Svensson, R. Sandstrom, V.C. Venkatesh, On the Nature of Micro-Chipping of HSS Saw Teeth During Power Hack Sawing, CIRP Annals - Manufacturing Technology, 33 (1984) 75-80.

[40] R. Sandstrom, A. Samuelsson, L.-E. Larsson, L. Lundberg, Crack initiation and growth during thermal fatigue of aluminium caster shells, Scand J Metall, 12 (1983) 99-106.

[39] R. Sandstrom, K. Malen, R. Otterberg, Prediction of stress relaxation under multiaxial stresses and application to the reactor pressure vessel steel A533B, Res Mechanica: International Journal of Structural Mechanics and Materials Science, 6 (1983) 215-232.

[38] R. Sandstrom, A. Kondyr, Creep Deformation, Accumulation of Creep Rupture Damage and Forecasting of Residual Life for Three Mo- and CrMo-Steels, VGB Kraftwerkstechnik, 62 (1982) 802-813.

[37] L. Lundberg, R. Sandstrom, Application of low cycle fatigue data to thermal fatigue cracking, Scand J Metall, 11 (1982) 85-104.

[36] B. Ahlblom, R. Sandstrom, Hot workability of stainless steels: influence of deformation parameters, microstructural components, and restoration processes, International metals reviews, 27 (1982) 1-27.

[35] R. Sandstrom, I. Lindgren, The combined influence of recrystallization and recovery on stress-strain curves in aluminium, Mater Sci Eng, 47 (1981) 217-228.

[34] B. Ivarsson, R. Sandstrom, I. Lindgren, Comparison of mechanical properties for temper-rolled and temper-annealed strips of aluminium and α-brass, Mater Sci Eng, 47 (1981) 229-242.

[33] R. Sandstrom, Formation and growth of recrystallisation nuclei around particles, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 71 (1980) 681-688.

[32] R. Sandstrom, Influence of a distribution of coarse particles on the recrystallisation kinetics. Application to Al-Fe alloys, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 71 (1980) 741-751.

[31] R. Otterberg, R. Sandstrom, A. Sandberg, Influence of Widmanstatten Ferrite on Mechanical-Properties of Microalloyed Steels, Met Technol, 7 (1980) 397-408.

[30] B. Ivarsson, R. Sandstrom, Creep deformation and rupture of butt-welded tubes of cold-worked aisi 316 steel, Metals technology London, 7 (1980) 440-448.

[29] R. Sandstrom, The Role of the Microstructure in Hot Working. I - Deformation Behaviour and Control of Properties, Jernkontorets Ann., 163 (1979) 33-35.

[28] R. Sandstrom, The Role of the Microstructure in Hot Working. II. - Hot Workability of Stainless Steel, Jernkontorets Ann., 163 (1979) 39-42.

[27] R. Sandstrom, Light-Metal Research at Institute for Metallurgy in Stockholm, Jka-Jernkontoret Ann, 163 (1979) 31-32.

[26] R. Sandstrom, B. Lehtinen, E. Hedman, I. Groza, S. Karlsson, Subgrain growth in Al and Al-1% Mn during annealing, J Mater Sci, 13 (1978) 1229-1242.

[25] R. Sandstrom, H. Bergqvist, Temperature dependence of tensile properties and strengthening of nitrogen alloyed austenitic stainless steels, Scand J Metall, 6 (1977) 156-169.

[24] R. Sandstrom, On recovery of dislocations in subgrains and subgrain coalescence, Acta Metall Mater, 25 (1977) 897-904.

[23] R. Sandstrom, Subgrain Growth Occurring by Boundary Migration, Acta Metall Mater, 25 (1977) 905-911.

[22] R. Sandstrom, B. Lehtinen, R. Lagneborg, High-voltage electron microscopy in scandinavia, Scand J Metall, 4 (1975) 17-41.

[21] R. Sandstrom, R. Lagneborg, A controlling factor for dynamic recrystallisation, Scripta Metall Mater, 9 (1975) 59-65.

[20] R. Sandstrom, R. Lagneborg, Model for Static Recrystallization after Hot Deformation, Acta Metall Mater, 23 (1975) 481-488.

[19] R. Sandstrom, R. Lagneborg, Model for Hot Working Occurring by Recrystallization, Acta Metall Mater, 23 (1975) 387-398.

[18] S. Nilsson, R. Sandstrom, R. Lagneborg, Strain dependence of the petch-hall factor in a low-carbon steel, Scand J Metall, 4 (1975) 89-92.

[17] S. Nilsson, R. Lagneborg, R. Sandstrom, Method to determine the mobile dislocation density in low-carbon steels, Met Sci J, 9 (1975) 223-225.

[16] A. Melander, R. Sandstrom, On the phonon-scattered intensity in weak-beam images, Philos Mag, 32 (1975) 1089-1093.

[15] A. Melander, R. Sandstrom, Stacking-Fault Contrast from Phonon-Scattered Electrons, J Phys C Solid State, 8 (1975) 767-&.

[14] A. Melander, R. Sandstrom, Weak-Beam and High-Resolution Bright-Field Contrast from Misfitting Spherical Inclusions, Phys Status Solidi A, 30 (1975) 647-658.

[13] A. Melander, R. Sandstrom, Dislocation Contrast from Phonon-Scattered Electrons in Weak-Beam Images, Acta Crystallogr A, A 31 (1975) 116-125.

[12] R. Lagneborg, R. Sandstrom, Petch-hall factor during discontinuous yielding, Met Sci J, 9 (1975) 226-232.

[11] R. Sandstrom, J.F. Spencer, C.J. Humphreys, Theoretical Model for the Energy Dependence of Electron Channelling Patterns in Scanning Electron Microscopy, J. Physics D (Appl. Physics), 7 (1974) 1030-1046.

[10] R. Sandstrom, A. Melander, L. Eriksson, Influence of non-systematic reflexions on weak-beam and high-resolution bright-field images in high-voltage electron microscopy, Physica Status Solidi (A) Applied Research, 26 (1974) 273-284.

[9] R. Sandstrom, R. Lagneborg, Discontinuous yielding - a modification of the johnson-gilman-hahn model to apply to yielding accompanied by luders band propagation, Scand J Metall, 3 (1974) 205-211.

[8] A. Melander, R. Sandström, The influence of the beam divergence on weak‐beam images, physica status solidi (a), 22 (1974) 587-592.

[7] R. Sandstrom, Weak-beam method in electron microscopy - 1. Theoretical analysis, Physica Status Solidi (A) Applied Research, 18 (1973) 639-649.

[6] R. Sandstrom, Weak-beam method in electron microscopy - 2. A comparison between 1 MV and 100 kV, Physica Status Solidi (A) Applied Research, 19 (1973) 83-91.

[5] R. Sandstrom, Sound propagation in an anharmonic metal. I. The generalized transport equations, Annals of Physics, 70 (1972) 516-588.

[4] R. Sandstrom, Sound propagation in an anharmonic metal. III. The collision-free regime, Annals of Physics, 71 (1972) 93-128.

[3] R. Sandstrom, Sound propagation in an anharmonic metal. II. The collision-dominated regime, Annals of Physics, 71 (1972) 25-92.

[2] R. Sandstrom, T. Hogberg, Anharmonic widths and shifts in simple metals. Application to aluminium, Journal of Physics and Chemistry of Solids, 31 (1970) 1595-1611.

[1] T. Hogberg, R. Sandstrom, Anharmonic Effects on Phonons in Aluminium, Physica Status Solidi, 33 (1969) 169-173.