Hoppa till huvudinnehållet
Till KTH:s startsida

FSF3847 Convex Optimization with Engineering Applications 6.0 hp

Course memo Spring 2023-60827

Version 2 – 03/16/2023, 9:09:23 AM

Course offering

Spring 2023-1 (Start date 20/03/2023, English)

Language Of Instruction

English

Offered By

SCI/Mathematics

Course memo Spring 2023

Headings denoted with an asterisk ( * ) is retrieved from the course syllabus version Spring 2019

Content and learning outcomes

Course contents

  • Convex sets

  • Convex functions

  • Convex optimization

  • Linear and quadratic programming

  • Geometric and semidefinite programming

  • Duality

  • Smooth unconstrained minimization

  • Sequential unconstrained minimization

  • Interior-point methods

  • Decomposition and large-scale optimization

  • Applications in estimation, data fitting, control and communications

Intended learning outcomes

After completed course, the student should be able to

  • characterize fundamental aspects of convex optimization (convex functions, convex sets, convex optimization and duality);

  • characterize and formulate linear, quadratic, geometric and semidefinite programming problems;

  • implement, in a high level language such as Matlab, crude versions of modern methods for solving convex optimization problems, e.g., interior methods;

  • solve large-scale structured problems by decomposition techniques;

  • give examples of applications of convex optimization within statistics, communications, signal processing and control.

Learning activities

The course consists of 24h lectures, given during Period 4, spring 2023.

Lectures will be given in Room 3721, Lindstedtsvägen 25, KTH.

There will be four set of homeworks, including peer grading, and an oral presentation of a selected topic. Lecture notes, homework assignment and other material related to the course will be posted in Canvas.

Video recordings from the lectures when the course given in spring 2021 are available in Canvas, as a complement.

Detailed plan

L# Date Time Venue Topic Lecturer
1 Tue Mar 21 13-15 Room 3721 Introduction MB/AF/JJ
2 Fri Mar 24 13-15 Room 3721 Convexity AF
3 Tue Mar 28 13-15 Room 3721 Linear programming and the simplex method AF
4

Fri Mar 31

13-15 Room 3721 Lagrangian relaxation, duality and optimality for linearly constrained problems AF
5 Tue Apr 4 10-12 Room 3721 Sensitivity and multiobjective optimization MB
6 Tue Apr 18 13-15 Room 3721 Convex programming and semidefinite programming AF
7 Fri Apr 21 13-15 Room 3721 Smooth convex unconstrained and equality-constrained minimization AF
8 Tue Apr 25 13-15 Room 3721 Conic programming, dual decomposition and subgradient methods MB
9 Fri Apr 28 13-15 Room 3721 Interior methods AF
10 Tue May 2 13-15 Room 3721 Large-scale optimization JJ
11 Fri May 5 13-15 Room 3721 Applications MB
12 Tue May 9 13-15 Room 3721 Applications JJ

Hand-in dates for homework assignments

Hand-in dates for the four homework assignments, specified in Examination and Completion below, are April 4, April 18, April 28 and May 9. Late homework solutions are not accepted.

Research presentation day

The presentations of a short lecture on a special topic, specified in Examination and Completion below, will be held on Tuesday May 16.

Preparations before course start

Literature

Course literature: S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004, ISBN: 0521833787

Course registration

PhD students from KTH register through regular registration procedures. Assistance can be obtained by sending e-mail to phdadm@math.kth.se.

PhD students from other universities must fill out this form and send signed copy by e-mail to phdadm@math.kth.se.

Examination and completion

Grading scale

P, F

Examination

  • INL1 - Assignment, 6.0 credits, Grading scale: P, F

Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.

The examiner may apply another examination format when re-examining individual students.

Other requirements for final grade

Successful completion of homework assignments and the presentation of a short lecture on a special topic.

There will be a total of four sets of homework assignments distributed during the course. Late homework solutions are not accepted.

The short lecture should sum up the key ideas, techniques and results of a (course-related) research paper in a clear and understandable way to the other attendees.

Ethical approach

  • All members of a group are responsible for the group's work.
  • In any assessment, every student shall honestly disclose any help received and sources used.
  • In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.

Further information

No information inserted

Round Facts

Start date

Missing mandatory information

Course offering

  • Spring 2023-60827

Language Of Instruction

English

Offered By

SCI/Mathematics

Contacts