Under hösten 2022 genomförde WISE sin första utlysning av doktorand- och postdokprojekt. Här kan du läsa mer om KTH:s beviljade projekt.
Doktorandprojekt
In this project we focus on developing disposable biosensors using sustainable materials and device designs. Most disposable technologies developed to date, including biosensors, integrate components that are difficult to separate and recycle (i.e., plastic and precious metals). Moreover, conventional electronic materials and their fabrication can be costly, making the products too expensive for low-cost applications, such as food monitoring. Here we address these issues by providing a new generation of biosensors based on inexpensive starting materials, components that are environmentally friendly upon disposal, and fabrication methods that are affordable and low-energy consumption. Our demonstrator for this class of biosensors is the monitoring of food spoilage especially monitoring of meat and food freshness as animal derived products have the largest environmental footprint per weight of all food types. In this application, the devices need to be cheap, provide stable operation during use, and safe disposal after service life. Such sensors are set to provide a solution to alert consumers and producers about spoiled food and reduce waste.
År 2030 kommer datorer att förbruka mer energi än alla världens bilar, flygplan och fartyg tillsammans. För att komma till rätta med denna flaskhals syftar detta projekt till att utveckla ny datorkomponenter som kallas 2D elektrokemiskt random-access memory (2D ECRAM). Vi kommer att tillverka material och komponenter från grunden och integrera dessa i chip för att möjliggöra nästa generation av revolutionerande datorer med integrerat minne. Dessa datorer har potential att utföra beräkningar som är tusentals gånger mer energieffektiva jämfört med dagens teknik.
För att uppnå detta kommer projektet att ta itu med sammanlänkade forskningsutmaningar inom 2D-material- och heterostrukturutveckling, 2D-materialtransistortillverkning och 2D-materialintegration. Mer specifikt kommer vi att utveckla nya metoder för att bearbeta 2D-jontroniska tunnfilmsmaterial och mönstra transistorer med modifierad CMOS renrumsteknologi. Dessutom kommer vi att utveckla integrerade systemarkitekturer baserad på våra 2D-elektrokemiska transistorer med metallkopplingar på kiselskivor.
To increase the transmission efficiency of electrical power in high voltage direct current (HVDC) cables, it has been proposed to move towards a 1-megavolt system. This, in turn, imposes greater demands on the insulation material of the high-voltage cables. It has been verified that adding certain nanoparticles improves the dielectric properties by several different and independently contributing factors regarding the crystal formation, boundary regions, surface compatibility, cavitation volumes, moisture content, and/or polar chemicals from processing.
Therefore, this project will focus on improving the insulation materials by investigating the dielectric performance of nanocomposites with abundant green carbon additives such as ultrafine carbon nanoparticles. The goal is to first study the extent of the dielectric performance improvement and establish its reproducibility and dependence on nanoparticle characteristics such as distribution, dispersity, and morphology. Secondly, using antioxidant additives such as green radical scavenging molecules and space charge accumulators will be investigated to further enhance the dielectric properties of the formed nanocomposites.
This project addresses a special type of quality-reducing impurities often found in Electroslag Remelted (ESR) tool steels; MgO-Al2O3 spinel inclusions. Both origin and measures to minimise their existence will be investigated by a combination of industrial trials, small-scale experiments, and modelling. With the end-goal to deliver an as clean tool steel as possible, in terms of MgO-Al2O3 spinels, resulting in improved final properties.
Vårt moderna samhälle är beroende av lättillgänglig kylning. Trots de stora ansträngningar som gjorts för att övergå till ozon- och klimatsäker kylning används fortfarande skadliga växthusgaser, med hög global uppvärmningspotential, i de kyltekniker som är vanligast förekommande i dag. Det här forskningsprojektet syftar till att utveckla material för högeffektiva och miljövänliga kylmedel i modern magnetisk kylning. Forskargruppen kommer att utforma högpresterande magnetokaloriska material (MCM) genom att använda multi-principal-element-legeringar (MPEA). De nya materialen kommer att vara fria från kritiska råvaror, vara billiga och finnas i rik tillgång. De ska också uppvisa stor magnetokalorisk effekt under magnetfält som skapas av permanentmagneter. Målet kommer att uppnås genom att integrera första principens kvantmekanisk modellering med experimentell verifiering.
Cemented carbides are among the most important materials within metal cutting and mining equipment. They have exhibited excellent performance when their hard phase, tungsten carbide, is bound by cobalt (Co). However, the carcinogenicity of Co powder and its availability mainly in conflict zones, have created a driving force for its substitution with a less harmful alternative. Advanced high-strength steel, with improved strength and ductility, through a transformation-induced plasticity (TRIP) effect, may present a suitable binder alternative to not only substitute Co but also pave the path for a completely new group of composites for applications not yet foreseen. In this project, thermodynamic and kinetic-based models, Ab initio calculations, and finite element analysis are used to explore different processing conditions and sets of compositions.
The principal scientific problem hindering a realization of an energy system based on sustainable chemistry is found in the control of interfacial catalysis. However, a predictive capacity in heterogeneous catalysis is still, even after intensive efforts, lacking. In order to realize synthesis of much needed new categories of highly efficient catalysts we must first establish an understanding of the relationships between the atomic structure of the active sites and the catalytic properties under relevant reaction conditions. This project addresses this problem.
Structure-function relationships of catalysts can be established from preparation, often through physical vapor deposition (PVD). However, PVD deposition of metals on single crystals often leads to a broad size distribution that may include single atoms, clusters, and even nanoparticles. The purpose of this project is to synthesize novel single-atom model catalysts, at high metal coverages, on uniform and well-defined supports using a deposition technique derived from atomic layer deposition (ALD). The synthesis of these model catalysts will allow determination of the atomic structure and study the dynamic behavior of the catalytic active sites under relevant reaction conditions. From the results we will be able to extract atomic structure – catalytic function relationships that can be used describe the reaction mechanism. By using in-situ characterization techniques we can identify the true nature of the catalytic active sites under reaction conditions, identify reaction intermediates and determine the activity and selectivity of the model catalysts.
Data processing and computations are based on a realization of information-carriers: bits. The realization of bits is based on the nature of excitations in a material. For example, magnetic excitation or ferroelectric excitations for magnetic or ferroelectric memory. Data processing in semiconductors is based on the control and manipulation of electric charges. We will investigate the new kinds of excitations, which discovery was reported in SCIENCE 3 Vol 380, Issue 6651 pp. 1244-1247 (2023) : fractional vortices that can be used to process and store information. We will explore if these excitations could be controlled and manipulated at dramatically lower energy costs.
Elektrokatalytiska reaktioner är avgörande för de energiomvandlingsprocesser som sker inom tekniker för energilagring, och spelar därför en viktig roll för hållbara energisystem och miljö.
Det här projektet syftar till att utveckla anisotropa elektrokatalysatorer av kopparaerogeler. Dessa material även är uppskalningsbara genom att man kopierar strukturerna hos biomaterial, där struktur från biomaterialet används och skräddarsys. Anisotropa metallbaserade aerogeler är en typ av gel i fast material, där den flytande komponenten har avlägsnats. Materialet är lovande på grund av att det kombinerar metallens unika egenskaper med de strukturella fördelarna hos aerogelerna, där den strukturella anisotropin ger en snabb masstransport. Koppar är ett särskilt attraktivt material på grund av dess tillgänglighet, höga reaktivitet, och tydliga redoxtillstånd. Nuvarande tillverkning av dessa material är begränsad då det saknas teknologier för att bygga upp stora anisotropa aegrogelstrukturer. Resultaten från detta forskningsprojekt kommer att bidra till forskningen om hållbar energi.
Förorenat vatten är ett globalt och växande problem. Detta projekt adresserar behovet av effektiva vattenreningsmaterial, biobaserade material och kemikalier samt behovet av att utnyttja biomassa mer effektivt.
Projektet syftar till att kombinera polymerkemi, mesoporös strukturering och nanoteknik för att skapa biobaserade materialsystem för bättre vattenkvalitet. Algpolysackarider kommer att modifieras kemiskt och struktureras hierarkiskt till affinitetsmaterial som reversibelt kan adsorbera föroreningar.
Biopolymerer utvinns från sjögräs. Projektet kommer att utforska såväl kemisk modifiering som guidad strukturering för att ta fram porer i flera olika storlekar med inbäddade nanostrukturer. Morfologi och adsorptionsmekanismer, selektivitet, kinetik, effektivitet och regenereringsförmåga kommer att studeras i detalj.
Supercapacitor performance is limited both by the amount of charge that can be stored on the electrodes, and the rate that the device can discharge. Ionic liquids (ILs) are salts that are nonetheless liquid, and they have been suggested as solvent media for capacitors but their viscosity limits power. IL self assembly at charged interfaces can take several forms, and we can now design ILs with a view to controlling this interfacial behavior. The project embraces a hybrid approach where a next-level projection of recent advances in our understanding of the interfacial self-assembly of ILs and their mixtures will allow the capacitance to be dramatically enhanced, as a means of significantly increasing the specific energy of devices, while maintaining acceptable resistance.
IEA (International Energy Agency) uppskattar att upp till 99,7 procent av koldioxidutsläppen från befintliga koleldade kraftverk kan minskas. Tekniken för koldioxidavskiljning finns, men kommersiell teknik har låg reaktionseffektivitet och kräver betydande energi för drift.
Detta projekt syftar till att utforska så kallade ”Liquid-Infused Materials” (LIM) för koldioxidinfånging. Dessa material består av en periodisk porös struktur med tiotusentals perfekt kontrollerade vätskedroppar. I detta experimentella projekt kommer forskargruppen att utveckla olika LIM och analysera transport- och reaktionsprocesser mellan ett gasflöde och vätskedroppar. Målet är att jämföra kapaciteten hos LIM för koldioxidinfångning med befintliga metoder.
Although 3D printing technologies for metals, plastics, ceramics, and even bio-materials are commercially available today, the capability to 3D print glass, considered the last frontier in additive manufacturing, remain limited. Initiated through an SSF funded project, Nobula successfully developed the Direct Glass Laser Deposition (DGLDTM) technique, providing a novel laser-based glass 3D printer that utilizes thin glass filaments as feedstock. Through direct laser heating using CO2-lasers, processing temperatures above 2000 °C are easily achieved, enabling printing of fused silica glass. Filaments of fused silica are easily manufactured using commercial optical fiber draw towers. However, fabricating filaments of other types of glass, e.g., borosilicate or soda-lime glass, has been a challenge.
The motivation of this project is to study the filament fabrication process for different types of glass suitable for 3D printing, both regarding material composition and structures. The vision is to expand the potential applications of glass 3D printing, with a focus on sustainability. To facilitate this study, the laser-based fiber draw tower developed at KTH will be used for material studies regarding filament fabrication, which will subsequently be evaluated using the glass 3D printers at Nobula.
Anion-exchange-membrane (AEM) water electrolyzers are a relatively recent electrolyzer technology for clean hydrogen production. Use of AEMs allows for less expensive catalysts, such as NiFe, compared to the more mature proton-exchange membrane water electrolyzers, which generally require precious-group-metal catalysts. However, AEM water electrolyzers only demonstrate acceptable performance when fed electrolyte solution instead of pure water, which is undesirable for a number of reasons. This project will explore the fundamental reasons behind the performance gain from an electrolyte feed and how this requirement can be mitigated.
Denna sida listar pågående forskningsprojekt inom WISE som leds av forskare vid KTH. En lista över samtliga beviljade projekt, inklusive projekt vid andra lärosäten, finns på
wise-materials.org
.