
ID2207 Modern Methods in Soft-
ware Engineering 7.5 credits
Moderna metoder inom programvaruutveckling (software engineering)

This is a translation of the Swedish, legally binding, course syllabus.

If the course is discontinued, students may request to be examined during the following two 
academic years

Establishment
Course syllabus for ID2207 valid from Spring 2019

Grading scale
A, B, C, D, E, FX, F

Education cycle
Second cycle

Main field of study
Computer Science and Engineering

Specific prerequisites
 • Computer Science courses 30 hp
 • Operating Systems courses 7,5 hp
 • Computer Programming courses 7,5 hp
 • English "level B" (Swedish Gymnasium)

Course syllabus for ID2207 valid from Spring 19, edition 1 Page 1 of 4



Language of instruction
The language of instruction is specified in the course offering information in the course 
catalogue.

Intended learning outcomes
The course aims both in giving students knowledge about modern software development 
methods and developing skills in usage the methods.

Our goal is to present a variety of approaches to software development and discuss their 
applicability boundaries, benefits, restriction and complementariness.

During the course students should learn about Software Engineering methods. In particular, 
they:

 1. Learn methods for dealing with complexity and changes in software construction. This 
means that students should get understanding of main approaches to abstraction, mod-
els, decomposition and software life-cycle.

 2. Understand basic components of software development process. This means that students 
should learn main methods and approaches to requirement elicitation and analysis, 
system and object design.

 3. Learn some modern approaches to software development. This means that students 
should learn about agile methods of software development and have experience in ap-
plying them to desing a software system.

 4. To get experience in evaluating different methods for producing of a high quality software 
system within time. This means that students should get practice in applying and com-
parison of different approaches to software development.

 5. To get experience in reporting and discussing results of the course homework and project 
both in oral and written forms.

 6. Understand ethical aspects and importance of sustainability in software development.
The course also includes a seminar as a part of the Software Engineering of Distributed 
Systems master program. The intention of the seminar is to put the course into the context 
of the software engineering research in general and into the context of the master program 
in particular.

Course contents
Introduction and basic concepts of Software Engineering (SE). Abstraction/Models and 
Decomposition. Software Life-Cycle. Unified process. Software Modeling language. Unified 
Modeling Language (UML). Requirements elicitation and analysis. System design. Object 
design. Applying patterns. Refactoring. Mapping models to code. Testing. Agile software 
development and agile modeling. Basics of Extreme Programming. Software project man-
agement.

Practical part of the course includes exercises and a small software development project 
applying SE methods.

Course syllabus for ID2207 valid from Spring 19, edition 1 Page 2 of 4



Course literature
Textbook for the course:
Object-Oriented Software Engineering: Using UML, Patterns and Java: International Edi-
tion, 3/E, Bernd Bruegge, Allen H. Dutoit, ISBN: 0136061257, Publisher: Prentice Hall, 
Copyright: 2010, Format: Paper; 800 pp Published: 29 July 2009 (available in the Kista 
Electrum book store

Lecture notes

Recommended Reading:

The following sources are recommended to obtain a deeper understanding of the subject.

 • E. Gamma et al. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995
 • M. Shaw, D. Garlan. Software Architecture. Perspectives on an Emerging Discipline. 

Prentice-Hall, 1996
 • http://www.extremeprogramming.org/start.html
 • Kent Beck. Extreme Programming Explained: Embrace Change, Publisher: Addison-Wes-

ley Professional; 1st edition (October 5, 1999)
 • Martin Fowler, Kent Beck, John Brant, William Opdyke, Don Roberts. Refactoring: 

Improving the Design of Existing Code, Addison-Wesley Professional; 1st edition (June 
28, 1999)

 • M. Matskin and E. Tyugu. Structural Synthesis of Programs and Its Extensions. Computer 
and Informatics Journal, v. 20, 2001, pp. 1-25

Additional articles in the curriculum may be added during the course.

Examination
 • ANN1 - Assignment, 3.0 credits, grading scale: P, F 
 • TEN1 - Examination, 4.5 credits, grading scale: A, B, C, D, E, FX, F 
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide 
how to adapt an examination for students with documented disability. 

The examiner may apply another examination format when re-examining individual stu-
dents.

Written examination (TEN1 4,5 hp)

Ethical approach
 • All members of a group are responsible for the group's work.
 • In any assessment, every student shall honestly disclose any help received and sources 

used.

Course syllabus for ID2207 valid from Spring 19, edition 1 Page 3 of 4



 • In an oral assessment, every student shall be able to present and answer questions about 
the entire assignment and solution.

Course syllabus for ID2207 valid from Spring 19, edition 1 Page 4 of 4


