Introduction to numerical methods in engineering. Mathematical models versus numerical models. Finite difference method. Galerkins method and method of weighted residuals. Simple elements. Stiffness method. Element formulations. Coordinate transformations. Isoparametry. Numerical interpolation. Convergence properties for dynamic problems. Hierarchical elements. Direct and iterative solvers. Eigenvalue analysis. Modal superposition. Integral equations. Examples of acoustic radiation and scattering using BEM. Simple fluid-structure interaction. Response analysis of a coupled problem. Modelling of damping and its effect on the response.
SD2175 Numerical Methods for Acoustics and Vibration 9.0 credits
The course covers the theoretical background and some practical experience on acoustic and vibration finite element and boundary element analysis. Modelling of damping in response predictions.
Information per course offering
Choose semester and course offering to see current information and more about the course, such as course syllabus, study period, and application information.
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus SD2175 (Spring 2022–)Content and learning outcomes
Course contents
Intended learning outcomes
After completing this course, students should be able to:
- Explain the key concepts behind numerical methods for acoustics and vibrations, such as finite element and finite difference methods, and discuss them in terms of simplifications, accuracy, performance and validation.
- Apply numerical theory to acoustics and vibrations problems by implementing it in numerical programs, and perform numerical calculations using computational software such as Matlab and Comsol Multiphysics.
- Reflect on numerical implementations, choose appropriate modelling approaches and troubleshoot problems that arise.
- Evaluate and critically judge numerical results in order to suggest improvements from both physical and numerical modelling perspectives.
- Present the outcome of their work in group discussions, formal oral presentations and written reports.
Literature and preparations
Specific prerequisites
Basic courses in mathematics and mechanics.
English B / English 6
Equipment
Literature
Examination and completion
If the course is discontinued, students may request to be examined during the following two academic years.
Grading scale
Examination
- INLA - 4x Assignment & Written report, 6.0 credits, grading scale: P, F
- PROA - Project & Oral and Written Report, 3.0 credits, grading scale: P, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
Other requirements for final grade
Examination, written test (TEN1; 4 university credits), Assignments (INL1; 3 university credits), Computer task, oral defence (INL1, 2 university credits).
Opportunity to complete the requirements via supplementary examination
Opportunity to raise an approved grade via renewed examination
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.
Further information
Course room in Canvas
Offered by
Main field of study
Education cycle
Add-on studies
SD2165 Acoustical Measurements
SD2150 Experimental Structure Dynamics
SD2155 Flow Acoustics
SD2180 Non-Linear Acoustics
SD2190 Vehicle Acoustics and Vibration