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TARGET PROBLEM

A person is pushing a mine cart along
a path L on a hill.

Calculate the “work” done to move
the cart from A to B.

We will arrive to the final answer in two steps:

1- The slope is constant
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2- the slope is not constant
path




Step 1.
W =‘|Eg,,HAT|:‘|EgHAT|COSa =F AT

o (to be precise, we should change sign to calculate
F the work done by the person)

W:Zw

Step 2: B
W, = F(K)Ar.

=W =3 F(F)-Ar

For ’very small” segments:

y W = lim > F(F)-AF = [ F(F)-dr

/ g AR, —>0
X

JL IE(r)' dr | is the line integral of F along the path L

We need to: o
- introduce a VECTOR FIELD, F(F)
- Define the infinitesimal displacement dr along the path L



VECTOR FIELD

A vector field associates a vector A(x,y,z) to each point (x,y,z) of the space.

Examples: - velocity distribution in a fluid
- magnetic field around a magnet
- electric field around an electric charge

Two typical ways to represent a vector field:

1- Arrow field —
e — .
/ — ~. » The arrow length is proportional
/ / ~_ \4 to the field amplitude
\4 e » The arrow direction shows the field
N direction
™,

2- Line field

» The tangent to the curves is parallel
to the vector field in all points.

» The density of the lines is proportional
to the strength of the field.




VECTOR FIELD
The airplane wing example (velocity field of air around a wing)

Low velocity (horizontal) Ijigh velocity (horizontal)
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EXERCISE: 1- plot the vector field F (F) = (x,0) i
2- write F (T") on the curve defined by: F(u) =(u,u?) |



O AND THE LINE INTEGRAL

Lisdescribedby F=T(U) b
r=r(u)

r., = — — _ [r (ui+1)_r(ui)] . dr
fa=T(U,) =dr=limAf = Allm[r(u,+1) r(u)]= lim - Au _Edu
U, =U; + AU

So, the line integral

can be calculated as:

= -dr [ Ecrean
| F(m-dr =] F(r()) ——du




LINE INTEGRAL (some useful properties)

THEOREM 1 (4.2n the textbook)

I_ B _L B
EM-dr=—| E(P.arF 3
R LF(r) dr jLF(r) dr (3)
PROOF
If all line elements change sign then also the integral will change sign.
DEFINITION

The line of integral of A along a closed curve C is called
circulation of a A along C:

§ A(M)-dr (4)




LINE INTEGRAL

DEFINITION: A vector field A is called conservative if: <§ A(r)-dr=0
THEOREM 2 @3inthe textbook ¢

The circulation of A along a close curve C is zero if and only if

for all points P and Q the line integral of A from P to Q is independent

from the integration path between P and Q. Q
PROOF
Assume that L, and L, are two curves from P to Q. P L,

Then L=L,-L, is a closed curve.
(1) The circulation is zero = the line integral from P to Q is independent from the path

fﬁ A(T)-dr =0
j,Am-r =],

1

= [ A(M)-dr=| A(F)-dr

The line integral is independent
from the integration path!

L K(r)-dr:jL K(r)-dr—jL A(T)-dr

(2) The line integral from P to Q is independent from the path = the circulation is zero.
j K(r)-dr:j A(T)-dr

L L, —_ _

_ = § A(F)-dF =0
<J3L A(T)-dr = | -

The circulation is zero

K(r)-drsz K(r).dr—jL A(F)-dr

Ll_LZ



LINE INTEGRAL
THEOREM 3 @.4in the textoook)

If A=grad¢:
[CAr)-dr = Q) — ¢(P) ®)

So the line integral is independent from the integration path
and depends only on the starting point and on the ending point

PROOF

If T(u) is a curve from P to Q then, using the chain rule for the partial derivative:

jr(u)A(r) dr —j gradg- —d —j [8¢,8¢’8¢jo(dx’dy’dz)du:

OX oy oz )\ du du du
_jq a¢dx+8¢dy+6¢dz
PLOX du oy du oz du

du =[S g(r (u))du = 4(Q) - 4(P)
P du

or, easier: | A(F)-dr =| gradg.dr= | d¢=4(B)—g(A)



OTHER KINDS OF LINE INTEGRALS

* It is possible to combine scalar and vector line elements in many
different ways along a curve L and thus get different kinds of line integrals

« Some examples: j¢(T)ds (6)
L

where dr = éds

j H(T)dF (7)
| APy > dF (8)

* To calculate the integrals:
r—>r(u)
L —>[a,b] whereu:a—b

dT:d—Tdu or ds=
du

a du
du




EXAMPLE

The forceis:  F =(-yz,xz,-1)

Calculate the work from P=(1,0,0) till Q=(1,0,4r)

The pathis L: ¥=(cosu,sinu,u) with u:0 »4x C
< ]

from definition (2)

W :jL E(r)-dr:'j:_:” If(F(u))g—zdu

F(T(u)) = (=(sinu)u, (cosu)u, —1) - i
dr . = F(T(U))'d—
Ez(—smu,cosu,l) u

Az
_ _ A u2
W :_[LF(r)-dr :jo (u—-1)du :{?—u} =87° —4rn

0

= (usin“u+ucos®u—1) =

=u(sin“u+cos“u)-1=u-1
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PRACTICAL EXAMPLE: THE BIOT-SAVART LAW

The magnetic field in a point P of a steady line current is given by the Biot-Savart law:

A Z

Where dl 'is an infinitesimal length along the wire,
I is the position vector of the point P and
I is a vector from the origin to dI '

Therefore, T —T ' is a vector from dl ' to P
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PRACTICAL EXAMPLE: THE BIOT-SAVART LAW

The magnetic field in a point P of a steady line current is given by the Biot-Savart law:

_ | dI_IX T—Tl A Z
B(T) — :uO J‘ — ( — )
A ¢ ‘r -7 ‘
Calculate the magnetic field in  (Xq.Y0,0) produced
by a straight wire with current | and length 2b B b
dl ' 4
r o,
SOLUTION: r=r -
x=0 _ y
_ Trn _ - . r
y=0 = 1(u)=(0,0,u) with u:-b—+b « (XY0.0)
Z=U
dl -b

——du=(0,0,1)du =dué,
du

., — 2 2 2 2, .2
F—T'=(X, Yo, —U) = |r—r|=\/x0+y0+u :\/rc+u
— 2 2 2 . ) ..
I, =Xy + Y, isthe distance from the origin to P

dl x(F=T")=dué, x(Xy, Yo, ~U) = (= Yo, %,,0)du

= Mol P (_yo’Xo’O)du Mo b du o
B = = - ' 10 = - ’ 10
Ol aw OOl G s o)

[

b
u Lol 2b
= —Yo, %o, 0
2 rf+u2]b 4x rf\/rf+b2( ¥o:%:0)
ol 2b

|B(T)|:47[rc \/m s




WHICH STATEMENT 1S WRONG?

1- The image area of a vector field A is composed of vectors
2- The line integral _[ F.dF isascalar

3- The sign of the line integral j F - dFdepends

on the integration path

4- The gradient of a vector field can be written as: grad A

(yellow)

(red)

(green)

(blue)
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TARGET PROBLEM

We are making cranberry juice.
After cranberries are squeezed,
It is better to filter the juice!

How much juice flows trough the cloth each second?

We need:

(1) to understand how to calculate the flux
of a VECTOR FIELD V (X, Y, 2)

(2) a method to integrate the flux over the whole surface.

15



THE FLUX

In the juice example, the flux F is the volume of the F = ﬂ
fluid AV that flows through the surface in the time At. At
—

STEP 1: - the fluid velocity is perpendicular

to the surface L vill
- the surface is not curved ool Rl e o
AV = XAS =|V|AtAS
AV < >
F=—=|V|IAS
e AS

STEP 2: - the fluid velocity is NOT
perpendicular to the surface
- the surface is not curved

F=[V,|AS=V-AAS =V-AS s

STEP 3: - the surface is curved

= LF = fim 2745, = [ds

_[\7 .dS | is the flux integral of V on the surface S
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dS AND FLUX INTEGRAL

« Assume that the surface S is parameterized by =r(u,v)

A

Z Let’s consider two displacements,

-due achangeinu: T, =F(U+Au,v) = AF, =T T
../ -dueachangeinv: F,=F(u,v+Av) = AF,=F,-T

——————————————————————————————————————————————————————————————

The area ASis AS = ‘AFZ‘Sin a‘AFl = ‘Afl X AFZ‘

N is perpendicular to S. But also AT, X AT, is perpendicular to S

= AS = IAS = AT, x AT,

17



dS AND FLUX INTEGRAL

dS = lim AS = lim AT, X AT,

N

Au—0 Au—0

AV—0 AV—0
dr, = lim A, = lim r(u+ Au,v) -1 (u,v) =

Au—0 Au—0 . ar 6r d d

. T(u+Au,v)=r(u,v or(u.v) . (=95 =——x—_—du
= lim ( )—T( )Au: ( )du ou ov
Au—0 AU ou
in the same way:
_or(u,v
dr, = ( )dv
oV )
So, the flux integral of the vector
field v on the surface S
can be calculated as:
_fv .dS = ”v(r(u v))- ( jdudv
oV
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EXAMPLE

Calculate the flux of the vector field A =(xy,0,z%)
through the surface S: z=x?+y? x°+

A6 <0 «—

SOLUTION: 1- figure

y*<1

2- Parameterization of S
3- Flux calculation using equation 10

-

v

=~

This defines in which direction we will calculate the flux.
fi is chosen so that z-component is negative.

v
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EXAMPLE

Parameterization of S Z=X?+Y?

X2+y2<1

(X= pCOSQ _
_ : p and ¢ are polar coordinates
r(p,p) {Y=psSing

L Z=X"+y* =(psing)’ +(psing)’ = p’

A ZA

0<p<l
O 4 0<e<2m
o r(p,9)

v

v

Parameterization of the vector field:  A=(xy,0,2*)=(p?2sing cosg, 0, p %)
20



EXAMPLE

Flux calculation using equation 10

[[ 05 =[[ Atr (o, (@xj—;jdpd(p

—Z(COS(D,Sin(D,ZIO) \ & & &
op oF oF ' ! Z
o - — %X% = Cos.qo sinp  2p|=

a—:(—pSIngo,pCOS(p,O) -psing pcosp 0
¢ J

(—2p% cos @, —2p*sin @, pcos® g+ psin® @) =
(—2p° cosp,—2p*sin g, p)

Note that (%) has a positive z-component,
while the flux was in the other direction.

So we ordinary solve the integral but then we change the sign in the answer!

21



EXAMPLE

or or

J A-ds =[] Ao, [—x£jdpd¢—

P27

(psing cosp,0,0)-(~2p* cos p,~2p* sin g, p)d pdp =

JO JO
27 1

(—2,04Sing0 cos’p +0+p° )d pdo =

JO JO

P27

2 . , 1 1
—— p’Sing cos“p+ d ——sine cos“p+— do =
g o oo [ do= [ oo cosor

J0

. . T
But we must change sign! The answer is —§



WHICH STATEMENT 1S WRONG?

1- The flux integral is a scalar

2- Flux integrals can be calculated also on a closed surface.

3- The perpendicular to the integration surface points out
from an arbitrary side.

4- The flux through a membrane can be
calculated with flux integrals.

(yellow)

(red)

(green)

(blue)
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