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LINE INTEGRAL 
and 

FLUX INTEGRAL 
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A person is pushing a mine cart along 
a path L on a hill.  
 
Calculate the “work” done to move 
the cart from A to B. 
 

TARGET PROBLEM 
B 

A 

We will arrive to the final answer in two steps: 
 
1- The slope is constant 
 
 
 
 
2- the slope is not constant 
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We need to: 
- introduce a VECTOR FIELD,   
- Define the  infinitesimal displacement       along the path L 
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(to be precise, we should change sign to calculate  
 the work done by the person) 



VECTOR FIELD 

A vector field associates a vector     (x,y,z) to each point (x,y,z) of the space. 

Examples:  - velocity distribution in a fluid 
      - magnetic field around a magnet 
                     - electric field around an electric charge 
 
Two typical ways to represent a vector field: 

• The arrow length is proportional  
   to the field amplitude 
• The arrow direction shows the field  
   direction 

1- Arrow field 

• The tangent to the curves is parallel 
   to the vector field in all points. 
• The density of the lines is proportional 
   to the strength of the field. 

2- Line field 
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VECTOR FIELD 
The airplane wing example (velocity field of air around a wing) 

High velocity (horizontal) Low velocity (horizontal) 

High velocity (horizontal) Low velocity (horizontal) 
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EXERCISE: 1- plot the vector field 
                     2- write            on the curve defined by:  
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So, the line integral 
can be calculated as: 
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LINE INTEGRAL (some useful properties) 
THEOREM  1 
 

(4.2 in the textbook) 

( ) ( )
L L

F r dr F r dr
−

⋅ = − ⋅∫ ∫

PROOF 

If all line elements change sign then also the integral will change sign. 

L -L 
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DEFINITION 
 The line of integral of        along a closed curve C is called 

circulation of a     along C: 

( )
C
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(4) 
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LINE INTEGRAL 

THEOREM  2 
 

(4.3 in the textbook) 

The circulation of      along a close curve C is zero if and only if  
for all points P and Q the line integral of      from P to Q is independent   
from the integration path between P and Q. 

PROOF 
Assume that L1 and L2 are two curves from P to Q. 

L1 

L2 P 

Q 

Then L=L1-L2 is a closed curve. 

1 2 1 2

( ) ( ) ( ) ( )
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L L

A r dr A r dr⋅ = ⋅∫ ∫
The line integral is independent  
from the integration path! 

(1) The circulation is zero ⇒ the line integral from P to Q is independent from the path 

(2) The line integral from P to Q is independent from the path ⇒ the circulation is zero. 
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The circulation is zero 

DEFINITION: A vector field      is called conservative if: ( ) 0
C

A r dr⋅ =∫A
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LINE INTEGRAL 
THEOREM  3 
 

(4.4 in the textbook) 

If                   : 

( ) ( ) ( )
Q

P
A r dr Q Pφ φ⋅ = −∫

So the line integral is independent from the integration path 
and depends only on the starting point and on the ending point 

PROOF 

If          is a curve from P to Q then, using the chain rule for the partial derivative: 
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OTHER KINDS OF LINE INTEGRALS 

• It is possible to combine scalar and vector line elements in many  
   different ways along a curve L and thus get different kinds of line integrals 

• Some examples: ( )
L

r dsφ∫
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L

r drφ∫
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• To calculate the integrals: 
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EXAMPLE 

The force is:  
 
The path is    L: with  u:0 → 4π 

Calculate the work from P=(1,0,0) till Q=(1,0,4π) 

from definition (2) 
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PRACTICAL EXAMPLE: THE BIOT-SAVART LAW 
The magnetic field in a point P of a steady line current is given by the Biot-Savart law: 
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Where        is an infinitesimal length along the wire, 
 
     is the position vector of the point P and 
 
     is a vector from the origin to 
 
Therefore,            is a vector from         to P 
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PRACTICAL EXAMPLE: THE BIOT-SAVART LAW 
The magnetic field in a point P of a steady line current is given by the Biot-Savart law: 
 
 
 
 
Calculate the magnetic field in             produced  
by a straight wire with current I and length 2b  
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WHICH STATEMENT IS WRONG? 

1- The image area of a vector field       is composed of vectors  (yellow) 
 
 
2- The line integral            is a scalar    (red) 
 
 
3- The sign of the line integral          depends  
     
     on the integration path      (green) 

 
 
4- The gradient of a vector field can be written as:   (blue) 

F dr⋅∫

F dr⋅∫

A

grad A
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We are making cranberry juice.  
After cranberries are squeezed, 
It is better to filter the juice! 
 
 
How much juice flows trough the cloth each second? 
 
 
 
We need : 
 
(1) to understand how to calculate the flux  
       of a VECTOR FIELD 
 

 
(2) a method to integrate the flux over the whole surface. 

 

TARGET PROBLEM 

),,( zyxv
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THE FLUX 
In the juice example, the flux F is the volume of the  
fluid ∆V that flows through the surface in the time ∆t. t

VF
∆
∆
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STEP 1: - the fluid velocity is perpendicular  
                 to the surface 
              - the surface is not curved 
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STEP 2: - the fluid velocity is NOT  
   perpendicular to the surface 
              - the surface is not curved 
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v
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AND FLUX INTEGRAL 

• Assume that the surface S is parameterized by  
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Let’s consider two displacements, 
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So, the flux integral of the vector 
field v on the surface  
can be calculated as: 
 

in the same way: 
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EXAMPLE 
Calculate the flux of the vector field  
through the surface    S:   z=x2+y2      x2+y2≤1 
    

This defines in which direction we will calculate the flux. 
n is chosen so that z-component is negative. 

SOLUTION: 1- figure 
2- Parameterization of  
3- Flux calculation using equation 10 
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z z=x2+y2 x2+y2 ≤1 
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z 

z=x2+y2 

x2+y2 ≤1 

n 
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EXAMPLE 

Parameterization of  z=x2+y2 

x2+y2 ≤1 

2 2 2 2 2

cos
sin

( sin ) ( sin )

x
y
z x y

ρ ϕ
ρ ϕ

ρ ϕ ρ ϕ ρ

=
=

= + = + =

ρ and ϕ are polar coordinates 

0≤ρ ≤1 
0≤ϕ≤2π 

ρ 

ϕ 

1 

2π 

x 

y 

z 

Parameterization of the vector field:  
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EXAMPLE 

Flux calculation using equation 10 

( ( , ))
S S

r rA dS A r d dρ ϕ ρ ϕ
ρ ϕ
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− − + =

− −

Note that  has a positive z-component,  
while the flux was in the other direction. 
 
So we ordinary solve the integral but then we change the sign in the answer! 

r r
ρ ϕ
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EXAMPLE 
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But we must change sign!   The answer is   
3
π

−
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WHICH STATEMENT IS WRONG? 

1- The flux integral is a scalar      (yellow) 
 
 
2- Flux integrals can be calculated also on a closed surface.  (red) 
 
 
3- The perpendicular to the integration surface points out  
    from an arbitrary side.      (green) 

 
 
4- The flux through a membrane can be  
     calculated with flux integrals.      (blue) 
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