VEKTORANALYS

Kursvecka 2

LINE INTEGRAL and FLUX INTEGRAL

Kapitel 4-5
Sidor 29-50

TARGET PROBLEM

A person is pushing a mine cart along a path L on a hill.

Calculate the "work" done to move the cart from A to B.

We will arrive to the final answer in two steps:
1- The slope is constant

Step 1:

$$
W=\left|\bar{F}_{\mathrm{g}^{\prime} /}\right||\Delta \bar{r}|=\left|\bar{F}_{g}\right||\Delta \bar{r}| \cos \alpha=\bar{F} \cdot \Delta \bar{r}
$$

(to be precise, we should change sign to calculate the work done by the person)

$$
\left.\begin{array}{l}
W=\sum_{i} W_{i} \\
W_{i} \approx \bar{F}\left(\bar{r}_{i}\right) \cdot \Delta \bar{r}_{i}
\end{array}\right\} \Rightarrow W \approx \sum_{i} \bar{F}\left(\bar{r}_{i}\right) \cdot \Delta \bar{r}_{i}
$$

For "very small" segments:

$$
W=\lim _{\Delta \bar{r}_{i} \rightarrow 0} \sum_{i} \bar{F}\left(\bar{r}_{i}\right) \cdot \Delta \bar{r}_{i} \equiv \int_{L} \bar{F}(\bar{r}) \cdot d \bar{r}
$$

$$
\int_{L} \bar{F}(\bar{r}) \cdot d \bar{r}
$$

is the line integral of \bar{F} along the path L

We need to:

- introduce a VECTOR FIELD, $\bar{F}(\bar{r})$
- Define the infinitesimal displacement $d \bar{r}$ along the path L

VECTOR FIELD

A vector field associates a vector $\bar{A}(x, y, z)$ to each point (x, y, z) of the space.
Examples: - velocity distribution in a fluid - magnetic field around a magnet - electric field around an electric charge

Two typical ways to represent a vector field:

2- Line field

- The tangent to the curves is parallel to the vector field in all points.
- The density of the lines is proportional to the strength of the field.

VECTOR FIELD

The airplane wing example (velocity field of air around a wing)

EXERCISE: 1- plot the vector field $\bar{F}(\bar{r})=(x, 0)$
2- write $\bar{F}(\bar{r})$ on the curve defined by: $\bar{r}(u)=\left(u, u^{2}\right)$

$d \bar{r}$ AND THE LINE INTEGRAL

$\left.\begin{array}{l}\bar{r}_{i}=\bar{r}\left(u_{i}\right) \\ \bar{r}_{i+1}=\bar{r}\left(u_{i+1}\right) \\ u_{i+1}=u_{i}+\Delta u\end{array}\right\} \Rightarrow d \bar{r}=\lim _{\Delta u \rightarrow 0} \Delta \bar{r}_{i}=\lim _{\Delta u \rightarrow 0}\left[\bar{r}\left(u_{i+1}\right)-\bar{r}\left(u_{i}\right)\right]=\lim _{\Delta u \rightarrow 0} \frac{\left[\bar{r}\left(u_{i+1}\right)-\bar{r}\left(u_{i}\right)\right]}{\Delta u} \Delta u=\frac{d \bar{r}}{d u} d u$
So, the line integral can be calculated as:

$$
\int_{L} \bar{F}(\bar{r}) \cdot d \bar{r}=\int_{a}^{b} \bar{F}(\bar{r}(u)) \cdot \frac{d \bar{r}}{d u} d u
$$

EXERCISE: Calculate $\int_{L} \bar{F}(\bar{r}) \cdot d \bar{r}$ with $\bar{F}(\bar{r})=(x, 0)$ and L defined by $\bar{r}(u)=\left(u, u^{2}\right)$

$$
u: 0 \rightarrow 1
$$

LINE INTEGRAL (some useful properties)

THEOREM 1 (4.2 in the textbook)

If all line elements change sign then also the integral will change sign.

DEFINITION

The line of integral of \bar{A} along a closed curve C is called circulation of a \bar{A} along C :

$$
\begin{equation*}
\oint_{C} \bar{A}(\bar{r}) \cdot d \bar{r} \tag{4}
\end{equation*}
$$

LINE INTEGRAL

DEFINITION: A vector field \bar{A} is called conservative if: $\oint_{C} \bar{A}(\bar{r}) \cdot d \bar{r}=0$ THEOREM 2 (4.3 in the textbook)
The circulation of \bar{A} along a close curve C is zero if and only if for all points P and Q the line integral of \bar{A} from P to Q is independent from the integration path between P and Q .

PROOF
Assume that L_{1} and L_{2} are two curves from P to Q. Then $L=L_{1}-L_{2}$ is a closed curve.

(1) The circulation is zero \Rightarrow the line integral from P to Q is independent from the path

$$
\left.\begin{array}{l}
\oint_{L} \bar{A}(\bar{r}) \cdot d \bar{r}=0 \\
\oint_{L} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{L_{1}-L_{2}} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{L_{1}} \bar{A}(\bar{r}) \cdot d \bar{r}-\int_{L_{2}} \bar{A}(\bar{r}) \cdot d \bar{r}
\end{array}\right\} \Rightarrow \int_{L_{1}} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{L_{2}} \bar{A}(\bar{r}) \cdot d \bar{r}
$$

(2) The line integral from P to Q is independent from the path \Rightarrow the circulation is zero.

$$
\left.\begin{array}{l}
\int_{L_{1}} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{L_{2}} \bar{A}(\bar{r}) \cdot d \bar{r} \\
\oint_{L} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{L_{1}-L_{2}} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{L_{1}} \bar{A}(\bar{r}) \cdot d \bar{r}-\int_{L_{2}} \bar{A}(\bar{r}) \cdot d \bar{r}
\end{array}\right\} \Rightarrow \begin{aligned}
& \oint_{\text {The circulation is zero }} \bar{A}(\bar{r}) \cdot d \bar{r}=0
\end{aligned}
$$

LINE INTEGRAL

THEOREM 3 (4.4in the extbook)

If $\bar{A}=\operatorname{grad} \phi$:

$$
\begin{equation*}
\int_{P}^{Q} \bar{A}(r) \cdot d \bar{r}=\phi(Q)-\phi(P) \tag{5}
\end{equation*}
$$

So the line integral is independent from the integration path and depends only on the starting point and on the ending point

PROOF

If $\bar{r}(u)$ is a curve from P to Q then, using the chain rule for the partial derivative:

$$
\begin{aligned}
& \int_{\bar{r}(u)} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{p}^{q} \operatorname{grad} \phi \cdot \frac{d \bar{r}}{d u} d u=\int_{p}^{q}\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot\left(\frac{d x}{d u}, \frac{d y}{d u}, \frac{d z}{d u}\right) d u= \\
& \quad=\int_{p}^{q}\left(\frac{\partial \phi}{\partial x} \frac{d x}{d u}+\frac{\partial \phi}{\partial y} \frac{d y}{d u}+\frac{\partial \phi}{\partial z} \frac{d z}{d u}\right) d u=\int_{p}^{q} \frac{d}{d u} \phi(\bar{r}(u)) d u=\phi(Q)-\phi(P) \\
& \text { Or, easier: } \int_{L} \bar{A}(\bar{r}) \cdot d \bar{r}=\int_{L} \operatorname{grad} \phi \cdot d \bar{r}=\int_{L} d \phi=\phi(B)-\phi(A)
\end{aligned}
$$

OTHER KINDS OF LINE INTEGRALS

- It is possible to combine scalar and vector line elements in many different ways along a curve L and thus get different kinds of line integrals
- Some examples: $\int_{L} \phi(\bar{r}) d s$

$$
\begin{align*}
& \int_{L} \phi(\bar{r}) d \bar{r} \tag{7}\\
& \int_{L} A(\bar{r}) \times d \bar{r} \tag{8}
\end{align*}
$$

where $d \bar{r}=\hat{e} d s$

- To calculate the integrals:

$$
\begin{aligned}
& \bar{r} \rightarrow \bar{r}(u) \\
& L \rightarrow[a, b] \\
& \text { where } u: a \rightarrow b \\
& d \bar{r}=\frac{d \bar{r}}{d u} d u \quad \text { or } \quad d s=\left|\frac{d \bar{r}}{d u}\right| d u
\end{aligned}
$$

EXAMPLE

The force is: $\quad \bar{F}=(-y z, x z,-1)$
The path is $\mathrm{L}: \bar{r}=(\cos u, \sin u, u)$ with $u: 0 \rightarrow 4 \pi$
Calculate the work from $\mathrm{P}=(1,0,0)$ till $\mathrm{Q}=(1,0,4 \pi)$

$$
W=\int_{L} \bar{F}(\bar{r}) \cdot d \bar{r} \stackrel{\bullet}{=} \int_{a=0}^{b=4 \pi} \bar{F}(\bar{r}(u)) \frac{d \bar{r}}{d u} d u
$$

$$
\left.\begin{array}{l}
\bar{F}(\bar{r}(u))=(-(\sin u) u,(\cos u) u,-1) \\
\frac{d \bar{r}}{d u}=(-\sin u, \cos u, 1)
\end{array}\right\} \Rightarrow \quad \bar{F}(\bar{r}(u)) \cdot \frac{d \bar{r}}{d u}=\left(u \sin ^{2} u+u \cos ^{2} u-1\right)=
$$

$$
W=\int_{L} \bar{F}(\bar{r}) \cdot d \bar{r}=\int_{0}^{4 \pi}(u-1) d u=\left[\frac{u^{2}}{2}-u\right]_{0}^{4 \pi}=8 \pi^{2}-4 \pi
$$

PRACTICAL EXAMPLE: THE BIOT-SAVART LAW

The magnetic field in a point P of a steady line current is given by the Biot-Savart law:

$$
\bar{B}(\overline{\mathrm{r}})=\frac{\mu_{0} I}{4 \pi} \int_{L} \frac{d \bar{l}^{\prime} \times\left(\bar{r}-\bar{r}^{\prime}\right)}{\left|\bar{r}-\bar{r}^{\prime}\right|^{3}}
$$

Where $d \bar{l}$ ' is an infinitesimal length along the wire,
\bar{r} is the position vector of the point P and
\bar{r}^{\prime} is a vector from the origin to $d \bar{l} \bar{l}^{\prime}$
Therefore, $\bar{r}-\bar{r}^{\prime}$ is a vector from $d \bar{l}$ ' to P

PRACTICAL EXAMPLE: THE BIOT-SAVART LAW

The magnetic field in a point P of a steady line current is given by the Biot-Savart law:

$$
\bar{B}(\overline{\mathrm{r}})=\frac{\mu_{0} I}{4 \pi} \int_{L} \frac{d \bar{l}{ }^{\prime} \times\left(\bar{r}-\bar{r}^{\prime}\right)}{|\bar{r}-\bar{r}|^{3}}
$$

Calculate the magnetic field in ($\mathrm{x}_{0}, \mathrm{y}_{0}, 0$) produced by a straight wire with current I and length 2 b

SOLUTION:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=0 \\
y=0 \Rightarrow \bar{l}(\mathrm{u})=(0,0, u) \quad \text { with } u:-b \rightarrow+b \\
z=u
\end{array}\right. \\
& \frac{d \bar{l}^{\prime}}{d u} d u=(0,0,1) d u=d u \hat{e}_{z} \\
& \bar{r}-\bar{r}^{\prime}=\left(x_{0}, y_{0},-u\right) \Rightarrow\left|\bar{r}-\bar{r}^{\prime}\right|=\sqrt{x_{0}^{2}+y_{0}^{2}+u^{2}}=\sqrt{r_{c}^{2}+u^{2}} \\
& d \bar{l} '^{\prime} \times\left(\bar{r}-\bar{r}^{\prime}\right)=d u \hat{e}_{z} \times\left(x_{0}, y_{0},-u\right)=\left(-y_{0}, x_{0}, 0\right) d u \\
& \bar{B}(\overline{\mathrm{r}})=\frac{\mu_{0}^{2} I}{4 \pi} \int_{-b}^{b} \frac{\left(-y_{0}^{2}, x_{0}, 0\right) d u}{\left(x_{0}^{2}+y_{0}^{2}+u^{2}\right)^{3 / 2}}=\frac{\mu_{0} I}{4 \pi}\left(-y_{0}, x_{0}, 0\right) \int_{-b}^{b} \frac{d u}{\left(r_{c}^{2}+u^{2}\right)^{3 / 2}}=\frac{\mu_{0} I}{4 \pi}\left(-y_{0}, x_{0}, 0\right)\left[\frac{u}{r_{c}^{2} \sqrt{r_{c}^{2}+u^{2}}}\right]_{-b}^{b}=\frac{\mu_{0} I}{4 \pi} \frac{2 b}{r_{c}^{2} \sqrt{r_{c}^{2}+b^{2}}}\left(-y_{0}, x_{0}, 0\right) \\
& |\bar{B}(\overline{\mathrm{r}})|=\frac{\mu_{0} I}{4 \pi r_{c}} \frac{2 b}{\sqrt{r_{c}^{2}+b^{2}}}
\end{aligned}
$$

WHICH STATEMENT IS WRONG?

1- The image area of a vector field \bar{A} is composed of vectors (yellow)

2- The line integral $\int \bar{F} \cdot d \bar{r}$ is a scalar

3- The sign of the line integral $\int \bar{F} \cdot d \bar{r}$ depends on the integration path

4- The gradient of a vector field can be written as: $\operatorname{grad} \overline{\mathrm{A}}$

TARGET PROBLEM

We are making cranberry juice. After cranberries are squeezed, It is better to filter the juice!

How much juice flows trough the cloth each second?

We need:
(1) to understand how to calculate the flux
 of a VECTOR FIELD $\bar{v}(x, y, z)$
(2) a method to integrate the flux over the whole surface.

THE FLUX

$\begin{aligned} & \text { In the juice example, the flux } \mathrm{F} \text { is the volume of the } \\ & \text { fluid } \Delta \mathrm{V} \text { that flows through the surface in the time } \Delta \mathrm{t} .\end{aligned} \quad F=\frac{\Delta V}{\Delta t}$
STEP 1: - the fluid velocity is perpendicular to the surface

- the surface is not curved

$$
\begin{aligned}
& \Delta V=x \Delta S=|\bar{v}| \Delta t \Delta S \\
& F=\frac{\Delta V}{\Delta t}=|\bar{v}| \Delta S
\end{aligned}
$$

STEP 2: - the fluid velocity is NOT perpendicular to the surface

- the surface is not curved

$$
F=\left|\bar{v}_{\perp}\right| \Delta S=\bar{v} \cdot \hat{n} \Delta S=\bar{v} \cdot \Delta \bar{S}
$$

STEP 3: - the surface is curved

$$
F=\sum_{i} F_{i}=\lim _{\Delta S_{i} \rightarrow 0} \sum_{i} \bar{v}_{i} \cdot \Delta \bar{S}_{i} \equiv \int_{S} \overline{\bar{V}} \cdot d \bar{S}
$$

$$
\int_{S} \bar{V} \cdot d \bar{S} \text { is the flux integral of } \bar{v} \text { on the surface } S
$$

$d \bar{S}$ AND FLUX INTEGRAL

- Assume that the surface S is parameterized by $\bar{r}=\bar{r}(u, v)$

The area $\Delta \mathrm{S}$ is $\Delta S=\left|\Delta \bar{r}_{2}\right| \sin \alpha\left|\Delta \bar{r}_{1}\right|=\left|\Delta \bar{r}_{1} \times \Delta \bar{r}_{2}\right|$
\hat{n} is perpendicular to S. But also $\Delta \bar{r}_{1} \times \Delta \bar{r}_{2}$ is perpendicular to S

$$
\Rightarrow \Delta \bar{S}=\hat{n} \Delta S=\Delta \bar{r}_{1} \times \Delta \bar{r}_{2}
$$

$d \bar{S}$ AND FLUX INTEGRAL

$$
\begin{aligned}
& \left.\begin{array}{rl}
d \bar{S}=\lim _{\substack{\Delta u \rightarrow 0 \\
\Delta v \rightarrow 0}} \Delta \bar{S} & =\lim _{\substack{\Delta u \rightarrow 0 \\
\Delta u \rightarrow 0}} \Delta \bar{r}_{1} \times \Delta \bar{r}_{2} \\
d \bar{r}_{1}=\lim _{\Delta u \rightarrow 0} \Delta \bar{r}_{1} & =\lim _{\Delta u \rightarrow 0} \bar{r}(u+\Delta u, v)-\bar{r}(u, v)= \\
& =\lim _{\Delta u \rightarrow 0} \frac{\bar{r}(u+\Delta u, v)-\bar{r}(u, v)}{\Delta u} \Delta u=\frac{\partial \bar{r}(u, v)}{\partial u} d u
\end{array}\right\} \Rightarrow d \bar{S}=\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v} d u d v
\end{aligned}
$$

So, the flux integral of the vector field \bar{v} on the surface \bar{S} can be calculated as:

$$
\int_{S} \bar{v} \cdot d \bar{S}=\int_{u} \int_{v} \bar{v}(\bar{r}(u, v)) \cdot\left(\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v}\right) d u d v
$$

EXAMPLE

Calculate the flux of the vector field $\bar{A}=\left(x y, 0, z^{2}\right)$ through the surface $S: \quad z=x^{2}+y^{2}$

$$
\begin{aligned}
& \mathrm{x}^{2}+\mathrm{y}^{2} \leq 1 \\
& \hat{n} \cdot \hat{e}_{z}<0
\end{aligned}
$$

SOLUTION: 1- figure
2- Parameterization of \bar{S}
3- Flux calculation using equation 10

EXAMPLE

Parameterization of $\bar{S} \quad \begin{aligned} & \mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2} \\ & \mathrm{x}^{2}+\mathrm{y}^{2} \leq 1\end{aligned}$

$$
\bar{r}(\rho, \varphi) \quad\left\{\begin{array}{l}
x=\rho \cos \varphi \\
y=\rho \sin \varphi \\
z=x^{2}+y^{2}=(\rho \sin \varphi)^{2}+(\rho \sin \varphi)^{2}=\rho^{2}
\end{array}\right.
$$

Parameterization of the vector field: $\quad \bar{A}=\left(x y, 0, z^{2}\right)=\left(\rho^{2} \sin \varphi \cos \varphi, 0, \rho^{4}\right)$

EXAMPLE

Flux calculation using equation 10

$$
\begin{aligned}
& \iint_{S} \bar{A} \cdot d \bar{S}=\iint_{S} \bar{A}(\bar{r}(\rho, \varphi)) \cdot\left(\frac{\partial \bar{r}}{\partial \rho} \times \frac{\partial \bar{r}}{\partial \varphi}\right) d \rho d \varphi \\
& \left.\begin{array}{l}
\frac{\partial \bar{r}}{\partial \rho}=(\cos \varphi, \sin \varphi, 2 \rho) \\
\frac{\partial \bar{r}}{\partial \varphi}=(-\rho \sin \varphi, \rho \cos \varphi, 0)
\end{array}\right\} \left.\Rightarrow\left(\frac{\partial \bar{r}}{\partial \rho} \times \frac{\partial \bar{r}}{\partial \varphi}\right)=\begin{array}{cc}
\hat{e}_{x} & \hat{e}_{y} \\
\cos \varphi & \hat{e}_{z} \\
\sin \varphi & 2 \rho \\
-\rho \sin \varphi & \rho \cos \varphi \\
& 0
\end{array} \right\rvert\,= \\
& \left(-2 \rho^{2} \cos \varphi,-2 \rho^{2} \sin \varphi, \rho \cos ^{2} \varphi+\rho \sin ^{2} \varphi\right)= \\
& \left(-2 \rho^{2} \cos \varphi,-2 \rho^{2} \sin \varphi, \rho\right)
\end{aligned}
$$

Note that $\left(\frac{\partial \pi}{\partial \alpha} \alpha \frac{\partial \pi}{\partial \varphi}\right)$ has a positive z-component, while the flux was in the other direction.

So we ordinary solve the integral but then we change the sign in the answer!

EXAMPLE

$$
\begin{aligned}
\iint_{-S} \bar{A} \cdot d \bar{S}= & \iint_{-S} \bar{A}(\bar{r}(\rho, \varphi)) \cdot\left(\frac{\partial \bar{r}}{\partial \rho} \times \frac{\partial \bar{r}}{\partial \varphi}\right) d \rho d \varphi= \\
& \int_{0}^{2 \pi} \int_{0}^{1}\left(\rho^{2} \sin \varphi \cos \varphi, 0, \rho^{4}\right) \cdot\left(-2 \rho^{2} \cos \varphi,-2 \rho^{2} \sin \varphi, \rho\right) d \rho d \varphi= \\
& \int_{0}^{2 \pi} \int_{0}^{1}\left(-2 \rho^{4} \sin \varphi \cos ^{2} \varphi+0+\rho^{5}\right) d \rho d \varphi= \\
& \int_{0}^{2 \pi}\left[-\frac{2}{5} \rho^{5} \sin \varphi \cos ^{2} \varphi+\frac{1}{6} \rho^{6}\right]_{0}^{1} d \varphi=\int_{0}^{2 \pi}\left(-\frac{2}{5} \sin \varphi \cos ^{2} \varphi+\frac{1}{6}\right) d \varphi= \\
& {\left[-\frac{2}{5}\left(-\frac{\cos ^{3} \varphi}{3}\right)+\frac{1}{6} \varphi\right]_{0}^{2 \pi}=\frac{\pi}{3} }
\end{aligned}
$$

But we must change sign! The answer is $-\frac{\pi}{3}$

WHICH STATEMENT IS WRONG?

1- The flux integral is a scalar
(yellow)

2- Flux integrals can be calculated also on a closed surface.

3- The perpendicular to the integration surface points out from an arbitrary side.

4- The flux through a membrane can be calculated with flux integrals.

