VEKTORANALYS

Kursvecka 1

övningar

PROBLEM 1

Calculate the gradient of the following scalar field:

$$
\phi(x, y)=e^{-\left(x^{2}+y^{2}\right)}
$$

(a) What is the direction of the maximum increase in point $\mathrm{P}=(-1,1)$?
(b) What is the maximum increase in point $\mathrm{P}=(-1,1)$?

SOLUTION

(a) The direction of the maximum increase is the direction of the gradient (theorem 1)

$$
\operatorname{grad} \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right)=\left(-2 x e^{-\left(x^{2}+y^{2}\right)},-2 y e^{-\left(x^{2}+y^{2}\right)}\right)
$$

In P we have: $\quad \operatorname{grad} \phi=-2 e^{-\left((-1)^{2}+1^{2}\right)}(-1,1)=-2 e^{-2}(-1,1)$
The direction is: $\hat{d}=\frac{(1,-1)}{\sqrt{2}}$
(b) The maximum increase in P is the absolute value of the gradient in P (theorem 1)

$$
|\operatorname{grad} \phi|=\left|-2 e^{-2}(-1,1)\right|=2 e^{-2} \sqrt{2}
$$

PROBLEM 2

The scalar fields f, g, h are given by:

$$
\begin{aligned}
& f(\bar{r})=2 x y-y^{2} z^{2}+2 x z \\
& g(\bar{r})=x^{3} y+y^{3} z-x z^{3} \\
& h(\bar{r})=x^{3} y^{2} z+x^{2} y z^{3}+x y^{3} z^{2}
\end{aligned}
$$

(a) Calculate the direction \hat{n} for which the directional derivative of f and g in the point $P(-1,0,1)$ is zero
(b) Calculate the directional derivative of h in P along the direction \hat{n}

SOLUTION

(a) The directional derivative of the scalar field ϕ in the direction \hat{n} is:

$$
\frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{n}
$$

Therefore, we need to find the direction \hat{n} for which:

$$
\left\{\begin{array}{l}
\operatorname{grad}(f) \cdot \hat{n}=0 \\
\operatorname{grad}(g) \cdot \hat{n}=0
\end{array}\right.
$$

Let's calculate the gradient of f and g :

$$
\begin{aligned}
& \text { grad } f=\left(2 y+2 z, 2 x-2 y z^{2},-2 y^{2} z+2 x\right) \\
& \operatorname{grad} g=\left(3 x^{2} y-z^{3}, x^{3}+3 y^{2} z, y^{3}-3 x z^{2}\right)
\end{aligned}
$$

In the point $\mathrm{P}=(-1,0,1)$ the gradients are:

$$
\begin{aligned}
& (\operatorname{grad} f)_{P}=(2,-2,-2) \\
& (\operatorname{grad} g)_{P}=(-1,-1,3)
\end{aligned}
$$

If $\hat{n}=(a, b, c)$ we obtain:

$$
\begin{aligned}
& (\operatorname{grad} f)_{P} \cdot \hat{n}=(2,-2,-2) \cdot(a, b, c)=0 \\
& (\operatorname{grad} g)_{P} \cdot \hat{n}=(-1,-1,3) \cdot(a, b, c)=0
\end{aligned}
$$

$$
\left.\begin{array}{l}
a-b-c=0 \\
a+b-3 c=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
a=2 c \\
b=c
\end{array}\right.
$$

Therefore: $\hat{n}=(2 c, c, c)$
Normalizing: $\hat{n}=\frac{(2,1,1)}{\sqrt{6}}$
(b) The directional derivative of the h in the direction \hat{n} in the point P is:

$$
\left(\frac{d h}{d s}\right)_{P}=(\operatorname{gradh})_{P} \cdot \hat{n}=(0,1,0) \cdot \frac{(2,1,1)}{\sqrt{6}}=\frac{1}{\sqrt{6}}
$$

PROBLEM 3

(A) Show a simple parametric description $\bar{r}=\bar{r}(u)$ for the curve:

$$
\left\{\begin{array}{l}
4 x-y^{2}=0 \tag{1}\\
x^{2}+y^{2}-z=0
\end{array}\right.
$$

From the point $(0,0,0)$ to the point $(1,2,5)$
(B) Calculate the vector tangent to the point $\left(\frac{1}{4}, 1, \frac{17}{16}\right)$

SOLUTION (point A)

A "parameterization" means that we have to introduce a new variable (u for example). The "old" variables x, y, and z will be dependent on u.

$$
\begin{aligned}
& \left.\begin{array}{l}
x=x(u) \\
y=y(u) \\
z=z(u)
\end{array}\right\} \Longleftrightarrow \bar{r}=\bar{r}(x(u), y(u), z(u))=\bar{r}(u) \\
& \text { Example: }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
4 x-y^{2}=0 \tag{1}\\
x^{2}+y^{2}-z=0
\end{array}\right.
$$

From the point $(0,0,0)$ to the point $(1,2,5)$
For example, we can choose: $\quad u=y$
From equation (1) $\Rightarrow \quad u^{2}=4 x \Rightarrow x=\frac{u^{2}}{4}$
From equation (2) $\Rightarrow \quad z=x^{2}+y^{2}=\frac{u^{4}}{16}+u^{2}$
So we obtain: $\quad \bar{r}(u)=\left(\frac{u^{2}}{4}, u, \frac{u^{4}}{16}+u^{2}\right)$
From the point $(0,0,0)$ to the point $(1,2,5)$

$$
\begin{aligned}
& (0,0,0) \Rightarrow u=0 \\
& (1,2,5) \Rightarrow u=2
\end{aligned}
$$

The curve is:

$$
\begin{aligned}
& \bar{r}(u)=\left(\frac{u^{2}}{4}, u, \frac{u^{4}}{16}+u^{2}\right) \\
& u: 0 \rightarrow 2
\end{aligned}
$$

SOLUTION (point B)

The tangent in a point is the value of the derivative (calculated in the parameter u) in that point.

$$
\bar{t}=\frac{d \bar{r}}{d u}=\left(\frac{2 u}{4}, 1, \frac{4 u^{3}}{16}+2 u\right)=\left(\frac{u}{2}, 1, \frac{u^{3}}{4}+2 u\right)
$$

The tangent has to be calculated in the point $\left(\frac{1}{4}, 1, \frac{17}{16}\right)$
since $u=y$, we have $u=1$
Therefore:

$$
\bar{t}=\left(\frac{1}{2}, 1, \frac{1}{4}+2\right)=\left(\frac{1}{2}, 1, \frac{9}{4}\right)
$$

PROBLEM 4

Consider the following surface:

$$
\begin{equation*}
x^{2}-2 y^{2}-2 z=0 \tag{1}
\end{equation*}
$$

Calculate:
(A) The equations of the normal line to the surface in the point $P=(2,1,1)$
(B) The equation of the tangent plane to the surface in the point P

SOLUTION (point A)

A normal line is a line that intersects the surface in the point. The direction of the line is perpendicular to the surface.

How to calculate the direction perpendicular to a surface?
Theorem 3: The gradient of a scalar field $\phi(x, y, z)$ in the point P is orthogonal to the level surface $\phi=c$ in P .

Consider the level surface $\quad \phi=x^{2}-2 y^{2}-2 z=0$
The normal line is parallel to the gradient

$$
\operatorname{grad} \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)=(2 x,-4 y,-2)
$$

$$
\ln P=(2,1,1) \quad \operatorname{grad} \phi=(4,-4,-2)
$$

The normal line can be written as: $\quad \bar{n}_{P}=(4,-4,-2)$

SOLUTION (point B)

A tangent plane is a plane that is parallel to the surface in the point.
From "basic" geometry, given a vector $\bar{v}=(A, B, C)$
Then the plane $A x+B y+C z+D=0 \quad$ is perpendicular to \bar{v}
Therefore, using $\quad \bar{v}=\bar{n}_{P}=(4,-4,-2)$
we have that the plane $4 x-4 y-2 z+D=0 \quad$ is perpendicular to \bar{n}_{P}
D is chosen in order that the plane passes through the point $P=(2,1,1)$:

$$
4 \cdot 2-4 \cdot 1-2 \cdot 1+D=0 \quad \Rightarrow D=-2
$$

$2 x-2 y-z-1=0 \quad$ passes through P and is tangent to the surface

