VEKTORANALYS

Kursvecka 1

GRADIENTEN

Kapitel 1-3

Sidor 3-28

TARGET PROBLEM

A mosquito is flying in the room. How does the mosquito find us in the dark?
A theory is: the mosquito flies toward the warmest region of the room
The mosquito must know:
(A) How the temperature $T(x, y, z)$ changes along the flying direction
(B) In which direction she must fly to be in a warmer place as soon as possible

We need to:
(1) introduce a SCALAR FIELD, $T(x, y, z)$
(2) measure the change of the scalar field $T(x, y, z)$ in R^{3} (i.e. the derivative)
(3) find the direction for which the change of $T(x, y, z)$ is maximum

SCALAR FIELD AND VECTOR FIELD

A scalar quantity is said to be a field if it is a function of position A scalar field associates a real number $\phi(x, y, z)$ to each point (x, y, z) of the space.

Examples: - temperature distribution in the space - pressure distribution in a fluid

- potential around an electric charge

A vector quantity is said to be a field if it is a function of position A vector field associates a vector $\bar{A}(x, y, z)$ to each point (x, y, z) of the space.

Examples: - velocity distribution in a fluid

- magnetic field around a magnet
- electric field around an electric charge

LEVEL SURFACES

- Level surfaces are useful to visualize a scalar field.
- What is a level surface?

A surface on which the scalar field $\phi(x, y, z)$ is constant:

$$
\begin{equation*}
\phi(x, y, z)=c \tag{1}
\end{equation*}
$$

- To create an "image" of the scalar field $\phi(x, y, z)$ we can consider a family of level surfaces:

$$
\begin{equation*}
\phi(x, y, z)=c+n h \tag{2}
\end{equation*}
$$

where h is a constant and $n=0, \pm 1, \pm 2, \pm 3, \ldots$
To improve the details of the "image", you can decrease h.

- In two dimensions the scalar field is $\phi(x, y) \Rightarrow$ we have level curves!

EXAMPLE

- Assume that $\mathrm{H}(\mathrm{x}, \mathrm{y})$ is a scalar field corresponding to the height of a mountain

Let's consider a family of level curves:

$$
H(x, y)=c+n h
$$

EXERCISE

Plot the level curves of the scalar field: $\quad \phi=\frac{x^{2}}{4}+y^{2}$

POSITION VECTOR

- The vector from the origin to the point $P=(x, y, z)$ is called position vector \bar{r}
- Note that \bar{r} depends on the choice of the coordinate system

- \bar{r} can be expressed with different notations:

$$
\bar{r}=\bar{r}(x, y, z) \quad \bar{r}=(x, y, z) \quad \bar{r}=x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z}
$$

- The differential of a position vector can be written as a vector whose components are the differential of each position vector component:

$$
\begin{gather*}
\bar{r}=x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z} \tag{3}\\
\rrbracket \\
d \bar{r}=d x \hat{e}_{x}+d y \hat{e}_{y}+d z \hat{e}_{z} \tag{4}
\end{gather*}
$$

POSITION VECTOR: example

The electrostatic potential in the point $\mathrm{P}\left(\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}, \mathrm{z}_{\mathrm{p}}\right)$ produced by an electrically charged wire " C " with charge density τ is:

$$
\phi\left(\bar{r}_{P}\right)=\int_{C} \frac{\tau}{4 \pi} \frac{|d \bar{r}|}{\left|\bar{r}_{P}-\bar{r}\right|}
$$

where $\quad \bar{r}_{P}=\left(x_{P}, \mathrm{y}_{P}, \mathrm{z}_{P}\right)$
We will not solve the integral (see next week).
But how can we express the term $\frac{|d \bar{r}|}{\left|\bar{r}_{P}-\bar{r}\right|}$?

$$
\begin{aligned}
& \bar{r}=(0,0, z)=z \hat{e}_{z} \\
& d \bar{r}=(0,0, d z)=d z \hat{e}_{z} \Rightarrow|d \bar{r}|=d z \\
& \bar{r}_{P}=\left(x_{P}, \mathrm{y}_{P}, \mathrm{z}_{P}\right) \Rightarrow \bar{r}_{P}-\bar{r}=\left(x_{P}, \mathrm{y}_{P}, \mathrm{z}_{P}-z\right) \Rightarrow\left|\bar{r}_{P}-\bar{r}\right|=\sqrt{x_{P}^{2}+y_{P}^{2}+\left(\mathrm{z}_{P}-z\right)^{2}}
\end{aligned}
$$

$$
\frac{|d \bar{r}|}{\left|\bar{r}_{P}-\bar{r}\right|}=\frac{d z}{\sqrt{\rho_{P}^{2}+\left(\mathrm{z}_{P}-z\right)^{2}}}
$$

where ρ_{P} is the distance of P from the curve C

THE GRADIENT

- Assume that $\phi(\bar{r})$ is a continuous and derivable scalar field
- DEFINITION:

$$
\begin{equation*}
\operatorname{grad} \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \tag{5}
\end{equation*}
$$

IMPORTANT: the gradient of a scalar field is a vector field!
EXERCISE: calculate the gradient of the vector field: $\quad \phi=\frac{x^{2}}{4}+y^{2}$ and plot $\operatorname{grad} \phi$ in the point $P=(2,0)$ and in the point $P=(0,-1)$

- Scalar field differential:

$$
\begin{equation*}
d \phi=\operatorname{grad} \phi \cdot d \bar{r} \tag{6}
\end{equation*}
$$

- Let's introduce :
- the amplitude of the position vector differential, $d \mathrm{~s}$, and

$$
\begin{equation*}
d \bar{r}=\hat{e} d s \tag{7}
\end{equation*}
$$

- the direction ê (ê is a unit vector, i.e. |êl=1)

Equations (6) and (7) give:

$$
\begin{equation*}
\frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e} \tag{8}
\end{equation*}
$$

The rate of variation of ϕ in a given direction corresponds to the component of the vector gradient in that direction

THE GRADIENT

THEOREM 1 (3.1 in the eextbook)

The gradient in the point P is a vector that points to the direction in which the growth of ϕ in P is the highest.
The maximum increase of ϕ per unit length is $\left|(\operatorname{grad} \phi)_{P}\right|$
PROOF
a- let's calculate the derivative in the direction ê Eq. (8)

$$
\frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e}=|\operatorname{grad} \phi| \cos \alpha
$$

b - this is maximum when:

$$
\cos \alpha=1
$$

which implies:

$$
\alpha=0 \quad(\hat{\mathrm{e}} / / \operatorname{grad} \phi) \quad \text { and } \quad \frac{d \phi}{d s}=|\operatorname{grad} \phi|
$$

THE GRADIENT

THEOREM $2_{\text {(3.2 in the eextbook })}$

The gradient in the point P is zero if ϕ has a maximum or a minimum in P

PROOF

From Equation (8): $\quad \frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e}$
ϕ has a maximum or a minimum in $P \Rightarrow d \phi / d s=0$
using equation (8), $d \phi / d s=0$ implies grad $\phi=0$

THE GRADIENT

THEOREM 3 (3.3 in the textbook)

The gradient of a scalar field $\phi(x, y, z)$ in the point P is orthogonal to the level surface $\phi=c$ in P .

PROOF

a- Let's do a small movement $d \bar{r}$ along the level surface
b- Remember that on the level surface ϕ is constant:

$$
d \phi=0
$$

c- Then, using equation (6):

$$
d \phi=\operatorname{grad} \phi \cdot d \bar{r}=0
$$

d- This implies that $\operatorname{grad} \phi$ is perpendicular to $d \bar{r}$
$\mathrm{e}-\operatorname{grad} \phi$ is perpendicular to each $d \bar{r}$ on the level surface $\operatorname{grad} \phi$ is perpendicular to the level surface

2D-EXAMPLE

- Theorems 1,2 and 3 are valid also in two dimensions.
- $\operatorname{grad} \phi$ is a vector field that:
- in each point is orthogonal to the level curve in that point and
- always points along the direction in which the height grows faster

Plot the level curves of the scalar field: $\phi=\frac{x^{2}}{4}+y^{2}$
and calculate the gradient in the points $P_{1}=(2,0)$ and $P_{2}=(0,-1)$

$$
\operatorname{grad} \phi=\left(\frac{x}{2}, 2 y\right)
$$

$$
\left.\operatorname{grad} \phi\right|_{P 1}=(1,0)
$$

$$
\left.\operatorname{grad} \phi\right|_{P 2}=(0,-2)
$$

ELECTROSTATIC POTENTIAL AND ELECTRIC FIELD

- Consider an electrostatic potential $V(\bar{r})$
- The electric field produced by $V(\bar{r})$ is: $\bar{E}(\bar{r})=-\operatorname{gradV}(\bar{r})$
(see the TET course for details)
- The force produced by $\bar{E}(\bar{r})$ on an electric charge q is: $\bar{F}(\bar{r})=q \bar{E}=-q \operatorname{gradV}(\bar{r})$

EXERCISE:

- Consider a proton in an electrostatic potential:

In which direction will the proton move?

TARGET PROBLEM

A mosquito is flying around in the room.
The temperature is described by the scalar field:

$$
T(x, y, z)=x^{2}+2 y z-z \quad\left[{ }^{\circ} C\right]
$$

The mosquito is in the point $\mathrm{P}=(1,1,2)$

(a) In which direction the mosquito will fly to be in a warmer place as quick as possible?
(b) How much the temperature changes in time if the mosquito flies with velocity $3 \mathrm{~m} / \mathrm{s}$ in direction $(-2,2,1)$?

TARGET PROBLEM

(a) In which direction the mosquito will fly to be warm as quick as possible?

We use theorem 1: The gradient in the point P is a vector that points to the direction in which the scalar field in P has the highest growth.
From definition (5):

$$
\begin{aligned}
& \operatorname{grad} T=\left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}, \frac{\partial T}{\partial z}\right) \\
& T(x, y, z)=x^{2}+2 y z-z \\
& \frac{\partial T}{\partial x}=2 x, \quad \frac{\partial T}{\partial y}=2 z, \quad \frac{\partial T}{\partial z}=2 y-1 \\
& \operatorname{grad} T=(2 x, 2 z, 2 y-1)
\end{aligned}
$$

The mosquito is in $\mathrm{P}=(1,1,2)$

$$
(\operatorname{grad} T)_{P=(1,1,2)}=(2 \cdot 1,2 \cdot 2,2 \cdot 1-1)=(2,4,1)
$$

The mosquito will fly in direction $(2,4,1)$

TARGET PROBLEM

(b) How fast the temperature changes if the mosquito flies with velocity $3 \mathrm{~m} / \mathrm{s}$ in direction $(-2,2,1)$?

We must calculate $\quad \frac{d T}{d t} \quad$ where t is the time

$$
\begin{aligned}
& \text { Using equation (6): } \\
& \begin{array}{l}
\frac{d T}{d t} \stackrel{\downarrow}{=} \operatorname{gradT} \cdot \frac{d \bar{r}}{d t}=\operatorname{gradT} \cdot \hat{e} \frac{d s}{d t} \\
\left\{\begin{array}{l}
\frac{d s}{d t}=|\bar{v}|=3 \mathrm{~m} / \mathrm{s} \\
\hat{e} \\
\hat{e}=\frac{\bar{v}}{|\bar{v}|}=\frac{(-2,2,1)}{|(-2,2,1)|}=\frac{(-2,2,1)}{\sqrt{(-2)^{2}+2^{2}+1^{2}}}=\frac{(-2,2,1)}{3}
\end{array}\right\} \Rightarrow \frac{d \bar{r}}{d t}=\frac{(-2,2,1)}{3} \cdot 3=(-2,2,1) \\
\frac{d T}{d t}=\operatorname{gradT} \cdot \frac{d \bar{r}}{d t}=(2,4,1) \cdot(-2,2,1)=5 \quad[\mathrm{C} / \mathrm{s}]
\end{array}
\end{aligned}
$$

WHICH STATEMENT IS WRONG?

1- A scalar field associates a real number to a point in space

2- The increase of a scalar field in a given direction is given by the directional derivative:

$$
\begin{equation*}
\frac{d \phi}{d s}=\operatorname{grad} \phi \cdot \hat{e} \tag{red}
\end{equation*}
$$

3- If ϕ is a scalar then $\operatorname{grad} \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right)$ in R^{3}

4- A scalar field can be written as $\bar{A}=\bar{A}(x, y, z)$

