
Lecture 8: Outline

• Chapter 6 + Appendix D: Location and perturbation of

eigenvalues

• Some other results on perturbed eigenvalue problems

• Chapter 8: Nonnegative matrices

KTH – Signal Processing 1 Magnus Jansson/Mats Bengtsson

Eigenvalue Perturbation Results,

Motivation

We know from a previous lecture that ρ(A) ≤ |||A||| for any matrix

norm. That is, we know that all eigenvalues are in a circular disk with

radius upper bounded by any matrix norm. Better results?

What can be said about the eigenvalues and eigenvectors of A+ ǫB

when ǫ is small?
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Geršgorin circles

Geršgorin’s Thm: Let A = D +B, where D = diag(d1, . . . , dn), and

B = [bij ] ∈ Mn has zeros on the diagonal. Define

r′i(B) =

n∑

j=1

j 6=i

|bij |

Ci(D,B) = {z ∈ C : |z − di| ≤ r′i(B)}

Then, all eigenvalues of A are located in

λk(A) ∈ G(A) =

n⋃

i=1

Ci(D,B) ∀k

The Ci(D,B) are called Geršgorin circles.

If G(A) contains a region of k circles that are disjoint from the rest,

then there are k eigenvalues in that region.
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Geršgorin, Improvements

Since AT has the same eigenvalues as A, we can do the same but

summing over columns instead of rows. We conclude that

λi(A) ∈ G(A) ∩G(AT ) ∀i

Since S−1AS has the same eigenvalues as A, the above can be

“improved” by

λi(A) ∈ G(S−1AS) ∩G
(
(S−1AS)T

)
∀i

for any choice of S. For it to be useful, S should be “simple”, e.g.,

diagonal (see Corollary 6.1.6).
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Invertibility and stability

If A ∈ Mn is strictly diagonally dominant such that

|aii| >
n∑

j=1

j 6=i

|aij | ∀i

then

1. A is invertible.

2. If all main diagonal elements are real and positive then all

eigenvalues are in the right half plane.

3. If A is Hermitian with all diagonal elements positive, then all

eigenvalues are real and positive.
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Reducible matrices

A matrix A ∈ Mn is called reducible if

• n = 1 and A = 0 or

• n ≥ 2 and there is a permutation matrix P ∈ Mn such that

PTAP =




B C

0 D




} r

} n− r

︸︷︷︸

r

︸︷︷︸

n−r

for some integer 1 ≤ r ≤ n− 1.

A matrix A ∈ Mn that is not reducible is called irreducible.

A matrix is irreducible iff it describes a strongly connected directed

graph, “A has the SC property”.
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Irreducibly diagonally dominant

If A ∈ Mn is called irreducibly diagonally dominant if

i) A is irreducible (= A has the SC property).

ii) A is diagonally dominant,

|aii| ≥

n∑

j=1

j 6=i

|aij | ∀i

iii) For at least one row, i,

|aii| >
n∑

j=1

j 6=i

|aij |
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Invertibility and stability,

stronger result

If A ∈ Mn is irreducibly diagonally dominant, then

1. A is invertible.

2. If all main diagonal elements are real and positive then all

eigenvalues are in the right half plane.

3. If A is Hermitian with all diagonal elements positive, then all

eigenvalues are real and positive.
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Perturbation theorems

Thm: Let A,E ∈ Mn and let A be diagonalizable, A = SΛS−1.

Further, let λ̂ be an eigenvalue of A+ E. Then there is some eigenvalue

λi of A such that

|λ̂− λi| ≤ |||S||| |||S−1||| |||E||| = κ(S)|||E|||

for some particular matrix norms (e.g., ||| · |||1, ||| · |||2, ||| · |||∞).

Cor: If A is a normal matrix, S is unitary =⇒ |||S|||2 = |||S−1|||2 = 1.

This gives

|λ̂− λi| ≤ |||E|||2

indicating that normal matrices are perfectly conditioned for eigenvalue

computations.
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Perturbation cont’d

If both A and E are Hermitian, we can use Weyl’s theorem (here we

assume the eigenvalues are indexed in non-decreasing order):

λ1(E) ≤ λk(A+ E)− λk(A) ≤ λn(E) ∀k

We also have for this case

[
n∑

k=1

|λk(A+ E)− λk(A)|
2

]1/2

≤ ||E||2

where || · ||2 is the Frobenius norm.
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Perturbation of a simple eigenvalue

Let λ be a simple eigenvalue of A ∈ Mn and let y and x be the

corresponding left and right eigenvectors. Then y∗x 6= 0.

Thm: Let A(t) ∈ Mn be differentiable at t = 0 and assume λ is a simple

eigenvalue of A(0) with left and right eigenvectors y and x. If λ(t) is an

eigenvalue of A(t) for small t such that λ(0) = λ then

λ′(0) =
y∗A′(0)x

y∗x

Example: A(t) = A+ tE gives λ′(0) = y∗Ex
y∗x .
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Perturbation of eigenvalues cont’d

Errors in eigenvalues may also be related to the residual r = Ax̂− λ̂x̂.

Assume for example that A is diagonalizable A = SΛS−1 and let x̂ and

λ̂ be a given complex vector and scalar, respectively. Then there is some

eigenvalue of A such that

|λ̂− λi| ≤ κ(S)
||r||

||x̂||

(for details and conditions see book).

We conclude that a small residual implies a good approximation of the

eigenvalue.
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• J. Moro, J. V. Burke, and M. L. Overton. On the Lidskii-Vishik-

Lyusternik perturbation theory for eigenvalues of matrices with arbitrary

Jordan structure. SIAM Journal on Matrix Analysis and Applications,
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Perturbation of eigenvectors with

simple eigenvalues

Thm: Let A(t) ∈ Mn be differentiable at t = 0 and assume λ0 is a

simple eigenvalue of A(0) with left and right eigenvectors y0 and x0. If

λ(t) is an eigenvalue of A(t), it has a right eigenvector x(t) for small t

normalized such that

x∗
0
x(t) = 1

with derivative

x′(0) = (λ0I −A(0))†
(

I −
x0y

∗
0

y∗
0
x0

)

A′(0)x0

B† denotes the Moore-Penrose pseudo inverse of a matrix B.

(See, e.g., J. R. Magnus and H. Neudecker. Matrix Differential Calculus

with Applications in Statistics and Econometrics. John Wiley & Sons

Ltd., 1988, rev. 1999)
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Perturbation of eigenvectors with

simple eigenvalues:

The real symmetric case

Assume that A ∈ Mn(R) is real symmetric matrix with normalized

eigenvectors xi and eigenvalues λi. Further assume that λ1 is a simple

distinct eigenvalue. Let Â = A+ ǫB where ǫ is a small scalar, B is real

symmetric and let x̂1 be an eigenvector of Â that approaches x1 as

ǫ → 0. Then a first order approximation (in ǫ) is

x̂1 − x1 = ǫ
n∑

k=2

xT
kBx1

λ1 − λk
xk

Warning: Non-unique derivative in the complex valued case!

Warning, Warning Warning: No extension to multiple eigenvalues!
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Chapter 8: Nonnegative matrices

Def: A matrix A = [aij ] ∈ Mn,r is nonnegative if aij ≥ 0 for all i, j, and

we write this as A ≥ 0. (Note that this should not be confused with the

matrix being nonnegative definite!)

If aij > 0 for all i, j, we say that A is positive and write this as A > 0.

(We write A > B to mean A−B > 0 etc.)

We also define |A| = [ |aij | ].

Typical applications where nonnegative or positive matrices occur are

problems in which we have matrices where the elements correspond to

• probabilities (e.g., Markov chains)

• power levels or power gain factors (e.g., in power control for wireless

systems).

• any other application where only nonnegative quantities appear.
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Nonnegative matrices: Some properties

Let A,B ∈ Mn and x ∈ C
n. Then

• |Ax| ≤ |A||x|

• |AB| ≤ |A||B|

• If A ≥ 0, then Am ≥ 0; if A > 0, then Am > 0.

• If A ≥ 0, x > 0, and Ax = 0 then A = 0.

• If |A| ≤ |B|, then |A| ≤ |B|, for any absolute norm |·|; that is, a

norm for which |A| = | |A| |.
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Nonnegative matrices: Spectral radius

Lemma: If A ∈ Mn, A ≥ 0, and if the row sums of A are constant, then

ρ(A) = |||A|||∞. If the column sums are constant, then ρ(A) = |||A|||1.

The following theorem can be used to give upper and lower bounds on

the spectral radius of arbitrary matrices.

Thm: Let A,B ∈ Mn. If |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).
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Nonnegative matrices: Spectral radius

Thm: Let A ∈ Mn and A ≥ 0. Then

min
i

n∑

j=1

aij ≤ ρ(A) ≤ max
i

n∑

j=1

aij

min
j

n∑

i=1

aij ≤ ρ(A) ≤ max
j

n∑

i=1

aij

Thm: Let A ∈ Mn and A ≥ 0. If Ax = λx and x > 0, then λ = ρ(A).
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Positive matrices

For positive matrices we can say a little more.

Perron’s theorem: If A ∈ Mn and A > 0, then

1. ρ(A) > 0

2. ρ(A) is an eigenvalue of A

3. There is an x ∈ R
n with x > 0 such that Ax = ρ(A)x

4. ρ(A) is an algebraically (and geometrically) simple eigenvalue of A

5. |λ| < ρ(A) for every eigenvalue λ 6= ρ(A) of A

6. [A/ρ(A)]m → L as m → ∞, where L = xyT , Ax = ρ(A)x,

yTA = ρ(A)yT , x > 0, y > 0, and xT y = 1.

The root ρ(A) is sometimes called a Perron root and the vector x = [xi]

a Perron vector if it is scaled such that
∑n

i=1
xi = 1.
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Nonnegative matrices

Generalization of Perron’s theorem to general non-negative matrices?

Thm: If A ∈ Mn and A ≥ 0, then

1. ρ(A) is an eigenvalue of A

2. There is a non-zero x ∈ R
n with x ≥ 0 such that Ax = ρ(A)x

For stronger results, we need a stronger assumption on A.
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Irreducible matrices

Reminder: A matrix A ∈ Mn, n ≥ 2 is called reducible if there is a

permutation matrix P ∈ Mn such that

PTAP =




B C

0 D




} r

} n− r

︸︷︷︸

r

︸︷︷︸

n−r

for some integer 1 ≤ r ≤ n− 1.

A matrix A ∈ Mn that is not reducible is called irreducible.

Thm: A matrix A ∈ Mn with A ≥ 0 is irreducible iff (I +A)n−1 > 0
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Irreducible matrices

Frobenius’ theorem: If A ∈ Mn, A ≥ 0 is irreducible, then

1. ρ(A) > 0

2. ρ(A) is an eigenvalue of A

3. There is an x ∈ R
n with x > 0 such that Ax = ρ(A)x

4. ρ(A) is an algebraically (and geometrically) simple eigenvalue of A

5. If there are exactly k eigenvalues with |λp| = ρ(A), p = 1, . . . , k,

then

• λp = ρ(A)ei2πp/k, p = 0, 1, . . . , k − 1 (suitably ordered)

• If λ is any eigenvalue of A, then λei2πp/k is also an eigenvalue of

A for all p = 0, 1, . . . , k − 1

• diag[Am] ≡ 0 for all m that are not multiples of k (e.g. m = 1).
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Primitive matrices

A matrix A ∈ Mn, A ≥ 0 is called primitive if

• A is irreducible

• ρ(A) is the only eigenvalue with |λp| = ρ(A).

Thm: If A ∈ Mn, A ≥ 0 is primitive, then

lim
m→∞

[A/ρ(A)]m = L

where L = xyT , Ax = ρ(A)x, yTA = ρ(A)yT , x > 0, y > 0, and

xT y = 1.

Thm: If A ∈ Mn, A ≥ 0, then it is primitive iff Am > 0 for some m ≥ 1.
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Stochastic matrices

A nonnegative matrix with all its row sums equal to 1 is called a (row)

stochastic matrix.

A column stochastic matrix is the transpose of a row stochastic matrix.

If a matrix is both row and column stochastic it is called doubly

stochastic.
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Stochastic matrices cont’d

The set of stochastic matrices in Mn is a compact convex set.

Let 1 = [1, 1, . . . , 1]T . A matrix is stochastic if and only if A1 = 1 =⇒

1 is an eigenvector with eigenvalue +1 of all stochastic matrices.

An example of a doubly stochastic matrix is A = [|uij |
2] where

U = [uij ] is a unitary matrix. Also, notice that all permutation matrices

are doubly stochastic.

Thm: A matrix is doubly stochastic if and only if it can be written as a

convex combination of a finite number of permutation matrices.

Corr: The maximum of a convex function on the set of doubly

stochastic matrices is attained at a permutation matrix!
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Example, Markov processes

Consider a discrete stochastic process that at each time instant is in one

of the states S1, . . . , Sn. Let pij be the probability to change from state

Si to state Sj . Note that the transition matrix P = [pij ], is a stochastic

matrix.

Let µi(t) denote the probability of being in state Si at time t and

µ(t) = [µ1(t), . . . , µn(t)], then µ(t+ 1) = µ(t)P contains the

corresponding probabilities for time t+ 1. If P is primitive (other terms

are used in the statistics literature), then µ(t) → µ∞ as t → ∞ where

µ∞ = µ∞P , no matter what µ(0) is. µ∞ is called the stationary

distribution.

Nice article: The Perron Frobenius Theorem: Some of its applications,

S. U. Pillai, T. Suel, S. Cha, IEEE Signal Processing Magazine, Mar.

2005.
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Further results

Other books contain more results.

In “Matrix Theory”, vol. II by Gantmacher, for example, you can find

results such as:

Thm: If A ∈ Mn, A ≥ 0 is irreducible, then

(αI −A)−1 > 0

for all α > ρ(A).

(Useful, for example, in connection with power control of wireless

systems).
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