LECTURE 8: OUTLINE

e Chapter 6 + Appendix D: Location and perturbation of
eigenvalues

e Some other results on perturbed eigenvalue problems

e Chapter 8: Nonnegative matrices
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EIGENVALUE PERTURBATION RESULTS,
MOTIVATION

We know from a previous lecture that p(A) < |||A]|| for any matrix
norm. That is, we know that all eigenvalues are in a circular disk with
radius upper bounded by any matrix norm. Better results?

What can be said about the eigenvalues and eigenvectors of A + ¢B

when € is small?
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GERSGORIN CIRCLES

Gersgorin’s Thm: Let A = D + B, where D = diag(d;, ...,
B = [b;;] € M, has zeros on the diagonal. Define
i(B) = |b]
j=1
J#i
Ci(D,B)={z€C:|z—d;| <rji(B)}
Then, all eigenvalues of A are located in

M e = JamB)

i=1
The C;(D, B) are called Gersgorin circles.

If G(A) contains a region of k circles that are disjoint from the rest,
then there are k eigenvalues in that region.
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GERSGORIN, IMPROVEMENTS
Since AT has the same eigenvalues as A, we can do the same but
summing over columns instead of rows. We conclude that

A(A) € G(A) NGAT) Vi

Since ST1AS has the same eigenvalues as A, the above can be
“improved” by

M(A) € G(ST'AS) NG((ST'AS)T) Vi

for any choice of S. For it to be useful, S should be “simple”, e.g.,

diagonal (see Corollary 6.1.6).
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INVERTIBILITY AND STABILITY

If A€ M, is strictly diagonally dominant such that

n
|aii| > Z ‘aij| Vi
j=1
J#i
then

1. Ais invertible.

2. If all main diagonal elements are real and positive then all
eigenvalues are in the right half plane.

. If Ais Hermitian with all diagonal elements positive, then all
eigenvalues are real and positive.
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REDUCIBLE MATRICES

A matrix A € M,, is called reducible if
en=1and A=0or

e 1 > 2 and there is a permutation matrix P € M, such that

B|C r
PTAP = )
0D |[}n—r
~— ~~
for some integer 1 <r <mn—1.

A matrix A € M,, that is not reducible is called irreducible.

A matrix is irreducible iff it describes a strongly connected directed
graph, “A has the SC property”.
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IRREDUCIBLY DIAGONALLY DOMINANT

If A€ M, is called irreducibly diagonally dominant if
i) A is irreducible (= A has the SC property).

ii) A is diagonally dominant,
n
lail > > lag| Vi
j=1
J#i
iii) For at least one row, 1,

n
laiil > ) lail
J

j=1

J#i
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INVERTIBILITY AND STABILITY,
STRONGER RESULT

If A€ M, is irreducibly diagonally dominant, then
1. Ais invertible.

2. If all main diagonal elements are real and positive then all
eigenvalues are in the right half plane.

3. If A is Hermitian with all diagonal elements positive, then all
eigenvalues are real and positive.
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PERTURBATION THEOREMS

Thm: Let A, E € M, and let A be diagonalizable, A = SAS™!.
Further, let ) be an eigenvalue of A + E. Then there is some eigenvalue
\; of A such that

A =Xl < IISISTHITIEN = s(S)IE]]
for some particular matrix norms (e.g., ||| - |1, || - ll2; ||| - ||lso)-

Cor: If A is a normal matrix, S is unitary = |||S|||2 = |||S7}]|]2 = 1.
This gives

A =Xl <1E][]2
indicating that normal matrices are perfectly conditioned for eigenvalue

computations.
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PERTURBATION CONT’D

If both A and E are Hermitian, we can use Weyl's theorem (here we

assume the eigenvalues are indexed in non-decreasing order):
M(E) < A(A+ E) — M (4) < A (E) vk

We also have for this case
n 1/2
STA+E) - (AP <IE]:

k=1

where || - ||2 is the Frobenius norm.

PERTURBATION OF A SIMPLE EIGENVALUE

Let A\ be a simple eigenvalue of A € M,, and let y and = be the
corresponding left and right eigenvectors. Then y*z # 0.

Thm: Let A(t) € M,, be differentiable at ¢ = 0 and assume X is a simple
eigenvalue of A(0) with left and right eigenvectors y and z. If A(¢) is an
eigenvalue of A(t) for small ¢ such that A(0) = A then

_ Y A0z

=

X(0)

Example: A(t) = A+ tE gives N (0) = L.£2.
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PERTURBATION OF EIGENVALUES CONT’D

Errors in eigenvalues may also be related to the residual r = A% — 3.
Assume for example that A is diagonalizable A = SAS~! and let & and
\ be a given complex vector and scalar, respectively. Then there is some

eigenvalue of A such that
A= il < k(S)

(for details and conditions see book).
We conclude that a small residual implies a good approximation of the

eigenvalue.
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PERTURBATION OF EIGENVECTORS WITH
SIMPLE EIGENVALUES

Thm: Let A(t) € M,, be differentiable at ¢ = 0 and assume \q is a
simple eigenvalue of A(0) with left and right eigenvectors yo and zg. If
A(t) is an eigenvalue of A(%), it has a right eigenvector x(t) for small ¢
normalized such that

xox(t) =1

with derivative

£0) = Ol = A0) (1 2 ) o)

Yoo

Bt denotes the Moore-Penrose pseudo inverse of a matrix B.

(See, e.g., J. R. Magnus and H. Neudecker. Matrix Differential Calculus
with Applications in Statistics and Econometrics. John Wiley & Sons
Ltd., 1988, rev. 1999)
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PERTURBATION OF EIGENVECTORS WITH
SIMPLE EIGENVALUES:
THE REAL SYMMETRIC CASE

Assume that A € M,,(R) is real symmetric matrix with normalized
eigenvectors x; and eigenvalues \;. Further assume that \; is a simple
distinct eigenvalue. Let A = A + B where € is a small scalar, B is real
symmetric and let &, be an eigenvector of A that approaches z; as

€ — 0. Then a first order approximation (in €) is

n
R x{Bwl
T —x1=¢€ E —
2 A1 - )\k:

[Warning: Non-unique derivative in the complex valued case!]

{Warning, Warning Warning: No extension to multiple eigenvalues!]
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CHAPTER 8: NONNEGATIVE MATRICES

Def: A matrix A = [a;;] € M, is nonnegative if a;; > 0 for all ¢, j, and
we write this as A > 0. (Note that this should not be confused with the
matrix being nonnegative definite!)

If a;; > 0 for all 7, j, we say that A is positive and write this as A > 0.
(We write A > B to mean A — B > 0 etc.)

We also define |A| = [|as;|].

Typical applications where nonnegative or positive matrices occur are

problems in which we have matrices where the elements correspond to
e probabilities (e.g., Markov chains)

e power levels or power gain factors (e.g., in power control for wireless
systems).

e any other application where only nonnegative quantities appear.
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NONNEGATIVE MATRICES: SOME PROPERTIES

Let A, B € M, and z € C". Then
o |4a] < |A]j2]
o [AB| < |A||B]
e If A>0, then A™ > 0; if A> 0, then A™ > 0.
e IfA>0, >0, and Az =0 then A = 0.

e If |[A| < |B|, then |A| < |B|, for any absolute norm |-|; that is, a
norm for which |A| = | |A4] |.
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NONNEGATIVE MATRICES: SPECTRAL RADIUS

Lemma: If A € M,,, A > 0, and if the row sums of A are constant, then
p(A) = |||A]||oc- If the column sums are constant, then p(A4) = |||A]|]1-

The following theorem can be used to give upper and lower bounds on
the spectral radius of arbitrary matrices.

Thm: Let A, B € M, If |[A| < B, then p(A) < p(|A|) < p(B).
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NONNEGATIVE MATRICES: SPECTRAL RADIUS

Thm: Let A€ M,, and A > 0. Then

n n
mvmzlau <p(A) < In?leaij
i= =

n n
min E aij < p(4) < max E ij
i A j 4
i=1 i=1

Thm: Let A € M,, and A > 0. If Az = Az and = > 0, then A = p(A4).
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POSITIVE MATRICES

For positive matrices we can say a little more.
Perron’s theorem: If A € M,, and A > 0, then
. p(4)>0
. p(A) is an eigenvalue of A
. There is an z € R™ with > 0 such that Az = p(A)x
. p(A) is an algebraically (and geometrically) simple eigenvalue of A
. |Al < p(A) for every eigenvalue X # p(A) of A

. [A/p(A))™ — L as m — oo, where L = zyT, Ax = p(A)z,
yTA=p(A)y", 2>0,9y>0, and 2Ty = 1.

The root p(A) is sometimes called a Perron root and the vector x = [z;]
a Perron vector if it is scaled such that 3" | z; = 1.
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NONNEGATIVE MATRICES

Generalization of Perron’s theorem to general non-negative matrices?

Thm: If Ae M, and A > 0, then
1. p(A) is an eigenvalue of A

2. There is a non-zero = € R™ with x > 0 such that Az = p(A)z

For stronger results, we need a stronger assumption on A.
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[RREDUCIBLE MATRICES

Reminder: A matrix A € M,,, n > 2 is called reducible if there is a
permutation matrix P € M, such that

PT AP — B|C |}r
0|D |[}n—r

~

r n—r

for some integer 1 <r <mn—1.
A matrix A € M,, that is not reducible is called irreducible.

Thm: A matrix A € M,, with A > 0 is irreducible iff (I + A)"~! >0
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IRREDUCIBLE MATRICES

Frobenius' theorem: If A € M,,, A > 0 is irreducible, then
. p(4)>0
. p(A) is an eigenvalue of A
. There is an € R™ with z > 0 such that Az = p(A)z

. p(A) is an algebraically (and geometrically) simple eigenvalue of A

. If there are exactly k eigenvalues with [A\,| = p(4), p=1,...,k,
then

e )\, =p(A)e??™/* p=0,1,...,k — 1 (suitably ordered)

i2np/k

e If X is any eigenvalue of A, then \e is also an eigenvalue of

Aforallp=0,1,...,k—1
o diag[A™] = 0 for all m that are not multiples of k£ (e.g. m = 1).
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PRIMITIVE MATRICES

A matrix A € M,,, A >0 is called primitive if
e A is irreducible

e p(A) is the only eigenvalue with |\, | = p(4).

Thm: If Ae M,, A> 0 is primitive, then
lim [A/p(A)]™ =L

m—o0

where L = xyT, Az = p(A)z, yTA = p(A)y”, 2 >0, y > 0, and
2Ty =1

Thm: If A€ M,, A >0, then it is primitive iff A™ > 0 for some m > 1.
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STOCHASTIC MATRICES

A nonnegative matrix with all its row sums equal to 1 is called a (row)
stochastic matrix.

A column stochastic matrix is the transpose of a row stochastic matrix.

If a matrix is both row and column stochastic it is called doubly
stochastic.
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STOCHASTIC MATRICES CONT’D

The set of stochastic matrices in M, is a compact convex set.

Let 1 =[1,1,...,1]T. A matrix is stochastic if and only if A1 =1 =
1 is an eigenvector with eigenvalue +1 of all stochastic matrices.

An example of a doubly stochastic matrix is A = [|u;;|*] where
U = [uy;] is a unitary matrix. Also, notice that all permutation matrices
are doubly stochastic.

Thm: A matrix is doubly stochastic if and only if it can be written as a
convex combination of a finite number of permutation matrices.

Corr: The maximum of a convex function on the set of doubly
stochastic matrices is attained at a permutation matrix!
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EXAMPLE, MARKOV PROCESSES

Consider a discrete stochastic process that at each time instant is in one
of the states Si,...,Sy. Let p;; be the probability to change from state
S; to state S;. Note that the transition matrix P = [p;;], is a stochastic
matrix.

Let y;(t) denote the probability of being in state S; at time ¢t and

w(t) = [a(t), ..., pn(t)], then p(t 4+ 1) = p(t) P contains the
corresponding probabilities for time ¢ + 1. If P is primitive (other terms
are used in the statistics literature), then u(t) — p> as t — oo where
u = p™ P, no matter what p(0) is. 4 is called the stationary
distribution.

Nice article: The Perron Frobenius Theorem: Some of its applications,
S. U. Pillai, T. Suel, S. Cha, IEEE Signal Processing Magazine, Mar.
2005.
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FURTHER RESULTS

Other books contain more results.

In “Matrix Theory”, vol. Il by Gantmacher, for example, you can find
results such as:

Thm: If A € M,,, A > 0is irreducible, then
(al —A)™' >0

for all o > p(A).

(Useful, for example, in connection with power control of wireless
systems).
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