

HIVE STREAMING

Mikael Högqvist
Senior Research Engineer

07/05/14

ABOUT PEERIALISM

- Founded in 2007 by entrepreneurs and researchers from KTH/SICS
- Mix of business people, developers and researchers
- R&D driven and specialized in P2P products
- Focused on enterprise customers

HIVE STREAMING

- Peer based streaming technology for public and private networks
- Offloads servers and networks with 97-99%
- Standalone or as part of Microsoft Azure Media Services
- Live and Video-on-Demand (VoD) content via Adaptive HTTP Streaming

ADAPTIVE HTTP STREAMING

- Video (and audio) is divided into data fragments
- Each video stream can have several bitrates (video quality)
- A manifest describes video metadata, bitrates, fragment location, etc.
- The player decides which bitrate to retrieve based on available bandwidth, rendering capabilities, load on the host
- Fragments are retrieved with a HTTP GET to the source/CDN

THE ENTERPRISE CHALLENGE

- Communication with high quality video, e.g. town-hall events
- Most corporate networks can't handle the load
- Existing solutions using hardware are not cost effective

One stream to each viewer causing overloaded servers and networks

HIVE - A SOFTWARE CDN

- High-level goals
 - Same Quality of Experience (QoE) as a hardware CDN
 - Efficiency through a single stream per network segment (locality awareness)
 - Support all Adaptive HTTP streaming protocols (Smooth Streaming, HDS, HLS, DASH)

Only one stream per link with HIVE

HIVE - ARCHITECTURE

- Each end-user device has a hive agent that intercepts all video player requests
- Hive acts as a distributed cache
 - Agents exchange Have messages indicating fragment availability
 - Cache miss: Retrieve from Source
 - Cache hit: Retrieve from another agent
- Same cache abstraction for both Live and VoD
 - Live data only available for a short time (~30 seconds)
 - VoD based on device storage capability
- Efficiency is determined by overlay construction

OVERLAY CONSTRUCTION – CHALLENGES

- Quality of user experience
 - Real-time requirements with hard deadlines, e.g. deliver fragment within 2 seconds
 - Quickly react to bitrate switches
- How to cope with
 - Limited bandwidth capacity
 - Network congestion
 - Churn
 - NAT/Firewalls
- Topology optimization
 - Content Locality
 - Bandwidth

OVERLAY - PUBLIC NETWORKS

Public networks

- Several devices behind a home router (NAT)
- Each device (network) is connected to the Internet via ISP

Challenges

- Heterogeneous device capacity and bandwidth
- Detect the network structure, i.e. avoid traffic across ISPs/ countries/continents

OVERLAY - PUBLIC NETWORKS

- Strive to minimize the load on the Source
- Construct a self-organizing mesh overlay network
 - Each node fully acts on local knowledge
- Emergent behavior
 - Nodes with higher capacity ends up closer to the source
 - Nodes within the same AS cluster together to achieve locality

OVERLAY - PRIVATE NETWORKS

Private networks

- Network segments (offices)
- VPN links between segments
- Few gateway links towards the Internet

Challenges

- Gateway and VPN links are potential bottlenecks
- Detect the network structure,
 i.e. avoid traffic cross branch
 offices or countries/continents

OVERLAY - PRIVATE NETWORKS

- Main goal to offload bottleneck links (VPN and Gateway)
 - A single incoming stream per bitrate
- Emergent behavior
 - Hierarchical overlay
 - Promoted supernodes per segment that fetch data before others

CDN

SYSTEM ARCHITECTURE

HIVE SERVICES

Registrar

Authentication server

Connectivity

NAT Discovery and connection establishment helper

Tracker

Introduces nodes to each other

Statistics

Detailed stats for troubleshooting and billing

SERVICE ARCHITECTURE

H

- Stateless API Frontends
 - Scala + Finagle
- Storage backends
 - Redis for tracker/lookup
 - OpenTSDB/Hbase for statistics data
- Snapshots processing framework
 - Kafka
 - Custom built consumers

PROCESSING PIPELINE

FRONTEND KAFKA CONSUMER STORAGE BATCH

07/05/14

CLIENT IMPLEMENTATION

- Based on Mesmerizer, a java component framework
- In-house network library
 - Fast SSL between all nodes
 - UDP-based transport with error detection and flow control
 - DTL: Dynamic priority congestion control
 - State of the art NAT traversal (NATCracker)

NAT Traversal Statistics

Sample of ~12000 peers

Open Internet: 18.1%

NATed: 78%

Average connectivity probability

Direct both ways all-to-all: 85%

■ One-way: 8%

Direct excluded impossible: 92%

Avg. Connection establishment time: ~800ms

07/05/14

DTL CONGESTION CONTROL

CORPORATE DEPLOYMENT - STATS

Test. Stream of 1Mbit/s, 130 concurrent clients

CORPORATE DEPLOYMENT – WITHOUT HIVE

CORPORATE DEPLOYMENT – WITH HIVE

CORPORATE DEPLOYMENT - STATS

Pilot Event. Stream of 1.4Mbit/s, max 2068 concurrent viewers

CORPORATE DEPLOYMENT – LARGE

CDC-DataCenter (Charlotte Data Center Charlotte, NC)

Pilot Event. Stream of 1.4Mbit/s, max 2068 concurrent viewers

WAN DEPLOYMENT - STATS

Test. Stream of 700Kbit/s, 6000 concurrent test

CURRENT RESEARCH

- Video on Demand (VoD)
 - Optimization based on real-world measurements
- Browser-based client (Hive.js)
 - No need to install plugins/native clients
 - Based on WebRTC (chrome + firefox)
 - Distributed caching algorithms
 - Proof of concept with base-line caching
- LEDBAT implementation as a contribution to the WebRTC stack

07/05/14 24

PUBLICATIONS

A System, Tools and Algorithms for Adaptive HTTP-Live Streaming on P2P Overlays, Roberto Roverso, PhD Thesis
On HTTP live streaming in large enterprises, Roverso et Al., SIGCOMM 2013, Hong Kong
Peer2View: a Peer-To-Peer HTTP-live streaming platform, Roverso et Al., P2P 2012, Sept, Tarragona (SP)
SmoothCache: HTTP-Live Streaming Goes Peer-To-Peer, Roverso et Al., IFIP Networking 2012, May, Prague (CZ)
DTL: Dynamic Transport Library for Peer-To-Peer Applications, Reale et Al., ICDCN 2012, January, Honk Kong (China)
NATCRACKER: NAT Combinations Matter, Roverso et Al., ICCCN 2009, July, San Francisco (CA)
Mesmerizer: a effective tool for a complete peer-to-peer software development life-cycle, Roverso et Al., Simutools 2011, Feb, Barcelona (SP)