
LECTURE 3: OUTLINE

• Ch. 2: Unitary equiv, QR factorization, Schur’s thm, Cayley-H., Normal matrices,

Spectral thm, Singular value decomp.

• Ch. 3: Canonical forms: Jordan/Matrix factorizations

KTH – Signal Processing 1 Magnus Jansson / Bhavani Shankar / Joakim Jaldén / Mats Bengtsson

UNITARY MATRICES

• A set of vectors {xi} ∈ C
n are called

– orthogonal if x∗

i xj = 0, ∀ i 6= j and

– orthonormal if they are orthogonal and x∗

i xi = 1, ∀i.

• A matrix U ∈ Mn is unitary if U∗U = I .

• A matrix U ∈ Mn(R) is real orthogonal if UTU = I .

• (A matrix U ∈ Mn is orthogonal if UUT = I .)

• If U, V are unitary then UV is unitary.

– Unitary matrices form a group under multiplication.
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UNITARY MATRICES CONT’D

The following are equiv.

1. U is unitary

2. U is nonsingular and U−1 = U∗

3. UU∗ = I

4. U∗ is unitary

5. the columns of U are orthonormal

6. the rows of U are orthonormal

7. for all x ∈ C
n, the Euclidean length of y = Ux equals that of x.

Def: A linear transformation T : Cn → C
m is a Euclidean isometry if

x∗x = (Tx)∗(Tx) for all x ∈ C
n

Unitary U is an Euclidean isometry.
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EUCLIDEAN ISOMETRY AND PARSEVAL’S THEOREM

1. FN be the FFT (Fast Fourier Transform matrix) of dimension N ×N , i. e,

FN (m,n) =
1√
N

e
−2π(m−1)(n−1)

N

2. F is a unitary matrix.

3. Let y = FNx i.e, y is the N point FFT of x.

(a) Length of x = Length of y

(b)
∑N

j=1
|x(j)|2 =

∑N

j=1
|y(j)|2 : This is energy conservation or Parseval’s

Theorem in DSP.
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UNITARY EQUIVALENCE

Def: A matrix B ∈ Mn is unitarily equivalent (or similar) to A ∈ Mn if

B = U∗AU for some unitary matrix U .

(i) A → S−1AS : similarity (Ch 1,3)

(ii) A → S∗AS : *congruence (Ch 4)

(iii) A → S∗AS with S unitary : unitary similarity (Ch 2)

Since in (iii) S∗ = S−1, we have that (iii) is “included” in both (i) and (ii).

Theorem: If A and B are unitarily equivalent then

‖A‖2F ,
∑

i,j

|aij |2 =
∑

i,j

|bij |2 = ‖B‖2F
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UNITARY MATRICES AND PLANE ROTATIONS : 2-D CASE

• Consider rotating the 2−D Euclidean plane counter-clockwise by an angle θ.

• Resulting coordinates,

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

• Equivalently,




x′

y′



 =





cos θ − sin θ

sin θ cos θ









x

y





• Note that U =





cos θ − sin θ

sin θ cos θ



 is unitary.
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UNITARY MATRICES AND PLANE ROTATIONS : GENERAL

CASE

U(θ, 2, 4) =















1 0 0 0

0 cos(θ) 0 − sin(θ)

0 0 1 0

0 sin(θ) 0 cos(θ)















• U(θ, 2, 4) rotates the second and fourth axes in R
4 counter clock-wise by θ.

• The other axes are not changed.

• Left multiplication by U(θ, 2, 4) affects only rows 2 and 4.

• Note that U(θ, 2, 4) is unitary.

• Such U(θ,m, n) are called Givens rotations.
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PRODUCT OF GIVENS ROTATIONS

• U = U(θ1, 1, 3)U(θ2, 2, 4) rotates

– second and fourth axes in R
4 counter clock-wise by θ2.

– first and third axes in R
4 counter clock-wise by θ1.

• U is unitary ⇒ product of Givens rotations is unitary.

• Such matrices are used in Least-Squares and eigenvalue computations.
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SPECIAL UNITARY MATRICES: HOUSEHOLDER MATRICES

Let w ∈ C
n be a normalized (w∗w = 1) vector and define

Uw = I − 2ww∗

Properties:

1. Uw is unitary and Hermitian.

2. Uwx = x, ∀ x ⊥ w.

3. Uww = −w

4. There is a Householder matrix such that

y = Uwx

for any given real vectors x and y of the same length.
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QR-FACTORIZATION

Thm: If A ∈ Mn,m and n ≥ m, then

A = QR

with Q ∈ Mn,m such that Q∗Q = I and R ∈ Mm is upper triangular.

• If m = n then Q is unitary.

• If A is nonsingular, then the diagonal elements of R can be taken to be positive

(Q and R are in this case unique).

• Gram Schmidt orthogonalization followed by book keeping.

• Useful in Least squares solutions, eigenvalue computations etc.
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THE QR-ALGORITHM FOR EIGENVALUE COMPUTATION

Initialization: Given A ∈ Mn, set k = 0, Ak = A,

1. Ak = QkRk (QR decomposition)

2. Obtain Ak+1 = RkQk.

3. Set k = k + 1 and go to Step 1.

Prove : Ak and A are unitarily equivalent for all k.

Under certain conditions Ak converges to an upper triangular matrix (as k → ∞)

whose diagonal elements correspond to the eigenvalues of A (see p. 114-115 in

Horn and Johnson).
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SCHUR’S UNITARY TRIANGULARIZATION THM

Theorem: Given A ∈ Mn with eigenvalues λ1, . . . , λn, there is a unitary matrix

U ∈ Mn such that

U∗AU = T = [tij ]

is upper triangular with tii = λi (i = 1, . . . , n) in any prescribed order. If

A ∈ Mn(R) and all λi are real, U may be chosen real and orthogonal.

Consequence: Any matrix in Mn is unitarily similar to an upper (or lower) triangular

matrix. Note that A = UTU∗.

Uniqueness:

1. Neither U nor T is unique.

2. Eigenvalues can appear in any order

3. Two triangular matrices can be unitarily similar
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SCHUR: THE GENERAL REAL CASE

Given A ∈ Mn(R), there is a real orthogonal matrix Q ∈ Mn(R) such that

QTAQ =















A1 ∗ . . . ∗
0 A2

.

.

.
. . .

.

.

.

0 . . . 0 Ak















∈ Mn(R)

where Ai (i = 1, . . . , k) are real scalars or 2 by 2 blocks with a non-real pair of

complex conjugate eigenvalues.

KTH – Signal Processing 13 Magnus Jansson / Bhavani Shankar / Joakim Jaldén / Mats Bengtsson

IMPLICATIONS OF THE SCHUR THEOREM

1. trA =
∑

j λj(A)

2. detA =
∏

j λj(A)

3. Cayley-Hamilton theorem.

4. . . .
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CAYLEY-HAMILTON THEOREM

Let pA(t) = det(tI −A) be the characteristic polynomial of A ∈ Mn. Then

pA(A) = 0

Consequences:

• An+k = qk(A) (k ≥ 0) for some polynomials qk(t) of degrees ≤ n− 1.

• If A is nonsingular: A−1 = q(A) for some polynomial q(t) of degree ≤ n− 1.

Important : Note pA(C) is a matrix valued function.
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NORMAL MATRICES

Def: A matrix A ∈ Mn is normal if A∗A = AA∗.

Examples:

All unitary matrices are normal.

All Hermitian matrices are normal.

Def: A ∈ Mn is unitarily diagonalizable if A is unitarily equivalent to a diagonal

matrix.
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FACTS FOR NORMAL MATRICES

The following are equivalent:

1. A is normal

2. A is unitarily diagonalizable

3. ‖A‖2F ,
∑

i,j |aij |2 =
∑n

i=1
|λi|2

4. there is an orthonormal set of n eigenvectors of A

The equivalence of 1 and 2 is called “the Spectral Theorem for Normal matrices.”
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IMPORTANT SPECIAL CASE: HERMITIAN (SYM) MATRICES

Spectral theorem for Hermitian matrices:

If A ∈ Mn is Hermitian, then,

• all eigenvalues are real

• A is unitarily diagonalizable.

If A ∈ Mn(R) is symmetric, then A is real orthogonally diagonalizable.
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SVD: SINGULAR VALUE DECOMPOSITION

Theorem: Any A ∈ Mm,n can be decomposed as

A = V ΣW ∗

• V ∈ Mm: Unitary with columns being eigenvectors of AA∗.

• W ∈ Mn: Unitary with columns being eigenvectors of A∗A.

• Σ = [σij] ∈ Mm,n has σij = 0, ∀ i 6= j

Suppose rank(A) = k and q = min{m,n}, then

• σ11 ≥ · · · ≥ σkk > σk+1,k+1 = · · · = σqq = 0

• σii ≡ σi square roots of non-zero eigenvalues of AA∗ (or A∗A)

• Unique : σi, Non-unique : V,W
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CANONICAL FORMS

• An equivalence relation partitions the domain.

• Simple to study equivalence if two objects in an equivalence class can be

related to one representative object.

• Requirements of the representatives

– Belong to the equivalence class.

– One per class.

• Set of such representatives is a Canonical form

• We are interested in a canonical form for equivalence relation defined by

similarity.
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CANONICAL FORMS: JORDAN FORM

Every equivalence class under similarity contains essentially only one, so called,

Jordan matrix:

J =











Jn1(λ1) 0

. . .

0 Jnk
(λk)











where each block Jk(λ) ∈ Mk has the structure

Jk(λ) =





















λ 1 0 . . . 0

0 λ 1
.
.
.

. . .
. . .

.

.

.

0 λ 1

0 λ




















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THE JORDAN FORM THEOREM

Note that the orders ni or λi are generally not distinct.

Theorem: For a given matrix A ∈ Mn, there is a nonsingular matrix S ∈ Mn

such that A = SJS−1 and
∑

i ni = n. The Jordan matrix is unique up to

permutations of the Jordan blocks.

The Jordan form may be numerically unstable to compute but it is of theoretical

interest.
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JORDAN FORM CONT’D

• The number k of Jordan blocks is the number of linearly independent

eigenvectors. (Each block is associated with an eigenvector from the standard

basis.)

• J is diagonalizable iff k = n.

• The number of blocks corresponding to the same eigenvalue is the geometric

multiplicity of that eigenvalue.

• The sum of the orders (dimensions) of all blocks corresponding to the same

eigenvalue equals the algebraic multiplicity of that eigenvalue.
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APPLICATIONS OF THE JORDAN FORM

Linear systems:

ẋ(t) = Ax(t); x(0) = x0

The solution may be “easily” obtained by changing state variables to the Jordan

form.

Convergent matrices: If all elements of Am tend to zero as m → ∞, then A is a

convergent matrix. Fact: A is convergent iff ρ(A) < 1 (that is, iff |λi| < 1, ∀i).
This may be proved, e.g., by using the Jordan canonical form.
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TRIANGULAR FACTORIZATIONS

Linear systems of equations are easy to solve if we can factorize the system matrix

as A = LU where L (U ) is lower (upper) triangular.

Theorem: If A ∈ Mn, then there exist permutation matrices P,Q ∈ Mn such that

A = PLUQ

(in some cases we can take Q = I and/or P = I).
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WHEN TO USE WHAT?

Theoretical Practical

derivations implem.

Schur triangularization , /

QR factorization , ,

Spectral dec. , ,(?)

SVD , ,

Jordan form , /!!
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