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Open and closed gueuing networks

e Queuing network: network of queuing systems
— E.g., data packets traversing the network from router to router
e Open and closed networks

— Open queuing network: customers arrive and leave the network
(typical application: data communication)

— Closed queueing networks: in and out flows are missing —
constant number of customers circulate in the network
(application: computer systems)

P11 f
L Ch$ Q4 Q:

P12 4 Pog

Y : L P34
o wmesay




mueuing networks- A tandem _—

system
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e The most simple open queuing network
e Assume a Poisson arrival process and independent, exponentially distributed
service times
e What is the departure process from queue 1?
— Interdeparture time:

e Customer leaves queue behind: time of service of next customer
e Customer leaves empty system behind: time to next arrival + time of service
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— Departure process: Poisson (A)!
e Same for M/M/m, but not for systems with losses and not for M/G/m systems




A tandem system
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e Tandem system
— Queue 1 is an M/M/1 queue
— Departure process from Queue 1 is Poisson
— Thus Queue 2 is also an M/M/1 queue
- State of the tandem queue: N=(n.,n,), p(n)=p(n;,n,)

e Jackson theorem: the network behaves as if set of independent
queues, that is:

- p(ny,ny) = pny)p(n,)
— Proof: see Virtamo notes




Modeling communication networks
- note on the independence assumption

emmmme [

interarrival time [ packet size [I correlation!

= The product form p(n,,n,) = p(n,)p(n,) applies only if the arrival and service
processes are independent
e For two transmission links in series, queue 2 is not a M/M/1-queue

— Correlation between service times of a customer in the two queues — determined
by the packet length and the link transmission rate
— Correlation between arrival and service times

= For two consecutive packets, the interarrival time at the second queue can not be smaller
than the service (that is, transmission) time of the first packet at the first queue

» E.g., there will not be any queuing in queue 2 if the transmission rate at queue 2 is larger
— Product form solution does not apply




qeling communication networks -

- note on the indepdence assumption

» Kleinrock’s assumption on independence

— Traffic to a queue comes from several upstream queues
e Superposition of Poisson processes give a Poisson process

— Traffic from a queue is spread randomly to several downstream queues
= Partial processes are Poisson with intensity p; 4 (£ p;=1)

— It is assumed to create independent arrival and service processes
— Product form solution applies
— E.g., network of large routers




pen Jackson’s queuing networks —

where the product form works

e Open queuing network

— arrivals to the network
— from all arrival point a departure point is reachable

e M queues with infinite storage and m exponential servers

— Even finite storage if “last queue” in the networks
= Customers from outside of the network arrive to node i as a Poisson process with intensity y,>0
e The service times are independent of the arrival process (and service times in other queues)
= A customer comes from node i to node j after service with the probability p; or leaves the

network with the probability p;,=1-3p;;.

= Note, it allows feedback (e.g, p,,). The arrival process in not Poisson anymore, but the queue
behaves as if the arrival would be Poissonian.

< Network is stable if all the queues are stable.
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Open Jackson’s queuing networks

= Flow conservation: arrival intensity to node j is

ﬁ“ 7/J+Z—1 i Dij

e Jacksons theorem: The distribution of number of customers in the
network has product form — queues behave as independent M/M/m

queues! (we do not prove — same as for tandem queues)

p(nl’nZ’”"nM ): pl(nl)”' Pwm (nM)
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Open Jackson’s queuing networks

= Flow conservation: arrival intensity to node j:

ﬁ“ 7/J+Z—1 i Dij

P1 A=r+A40 p:ﬁ

- Example 1: single feedback queue
Hy
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— Performance measures as if it would be M/M/1
— Though the arrival process is not Poisson

— Stability: A, /u,<1
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Open Jackson’s queuing networks
e Arrival intensity and state probability
M
Ay =7+ 2 by

P(nl’nZ"”’nM ): Pl(nl)”'PM (nM)
e [For the M/M/1 case:

P(n)=(@-p)p™ and p, = 2,/ 4 <1

e Example 2

— calculate arrival intensities, give the “stability region”, the possible arrival
rates, when the network is stable

— calculate the probability that the network is empty
— calculate the probability that there is one customer in the network




!pen Jackson’s queuing networks

Mean performance measures

- Little’s theorem applies to the entire network! — Good, because T is hard
to calculate if there are feedback loops.

e The mean number of customers in the network and the average time
spent in the network are (e.g., M/M/1 case)

ol
N :ZI;Alej :ZIJYI:ll_Jpj
T=N /Z'}":l}/j

e The mean number of nodes a customer visits before leaving:
— {Sum arrival intensity to the queues} / {arrival intensity to the network}

Vv ZZL/IJ /ZL?/V A =7 +Zil\il/l' P




Closed Jackson’s queuing networks

e Not exam material this year

e Closed queuing network

e M queues with infinite storage and m exponential servers

e K customers circulating in the network, no arrivals and departures
e The service times are independent of the arrival process (and service

times in other queues)

e A customer comes from node i to node | after service with the

e Queues can not be independent, since there is a fixed number of

probability pj;
customers
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Closed Jackson’s queuing networks

= Flow conservation: arrival intensity to node j, the problem is that none of the [I-s are
known:

7= LA,

e Limited set of states, since the sum of the customers is constant K:

S={(n,n,,....ny ), ._OZn—K}

e MC based solution: state: vector of number of customers per queue - complex
e Algorithmic solution — e.g., M/M/1
— (*) gives a set of dependent equations, with solution of e.qg.:

{12, A, Agvdy y=a{l e, 8,,8,,..8, }

— we have to select the one that gives sum of network state probabilities equal to one
— Gordon-Newell: state probabilities, without calculating arrival intensities (without proof)

-2 ai-2f(2]

M i=1 neS i=1




Summary

e Queuing networks:
— set of queuing systems
— customers move from gueue to queue

e Applied to networking problems: independence of queues have to
be ensured

e Open queuing networks
— Burke: Output process of an M/M/m queue is Poissonian

— Jackson theorem: network state probability has product form if
M/M/m queues

e Closed queuing networks — not exam material
— Number of customers constant
— State of queues is dependent — Gordon-Newell normalization
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