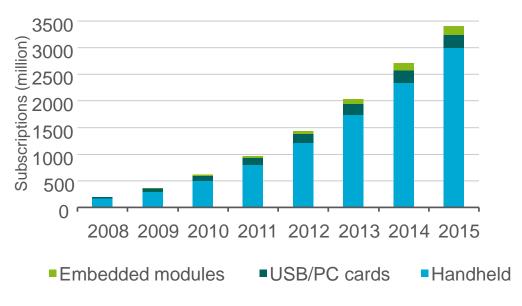


4G MOBILE BROADBAND – LTE PART I


Dr Stefan Parkvall Principal Researcher Ericson Research

DATA OVERTAKING VOICE

> Data is overtaking voice...

...but previous cellular systems designed primarily for voice

Rapid subscriber growth

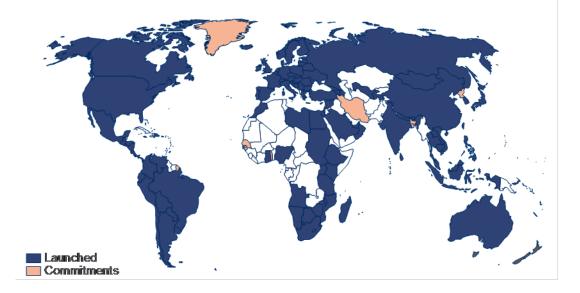
50 40 30 20 10 0 2008 2009 2010 2011 2012 2013 2014 2015 Mobile PC Mobile handheld Voice

Rapid traffic growth

MOBILE BROADBAND

> HSPA – High-Speed Packet Access ("Turbo-3G")

- Evolution of 3G/WCDMA
- Data rates up to ~168 Mbit/s (DL), ~44 Mbit/s (UL)
- Support for broadcast services (IMB)


> LTE ("4G")

- Very high data rates in a wide range of spectrum allocations
- Data rates up to 300 Mbit/s (DL), 75 Mbit/s (UL) in frist version
- Integral support for broadcast services

THE 3GPP ECOSYSTEM

333 HSPA operators in 139 countries...

2922 HSPA devices from 255 suppliers...

Source: GSA, WCIS/Informa, and Infonetics

OUTLINE

Series of three seminars

I. Basic principles

- Channel and traffic behavior
- Link adaptation, scheduling, hybrid-ARQ
- Evolving 3G, inclusion of basic principles in WCDMA

II. LTE

- First step into 4G
- Path towards IMT-Advanced
- III. Standardization
 - How are HSPA and LTE created?
 - 3GPP, ITU, ...

RADIO CHANNELS AND PACKET DATA – SOME PROPERTIES

WIRELESS VS WIRELINE

> Wireless seems simple...

$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

>...so what's the problem?

WIRELESS VS WIRELINE

> Many aspects are similar...

...but there are some fundamental differences!

Wireline

- Cable
- "No" spectrum limitation
 - Over-provisioning
- Relatively static channels
 - No fading
- Congestion
 Iost packets
- No mobility

Wireless

- > No cable 🙂
- Spectrum is scarce
 - Radio-resource management
- > Time-varying radio channel
 - Fast fading
- > Fading ➡ lost packets
- Mobility

RADIO-CHANNEL VARIATIONS

> Transmitted power P_{Tx} rightarrow received power $P_{Rx} << P_{Tx}$

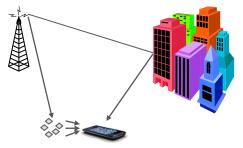
) Path loss $\propto 1/r^{\alpha}$ $\alpha \approx 2 \cdots 3.5$

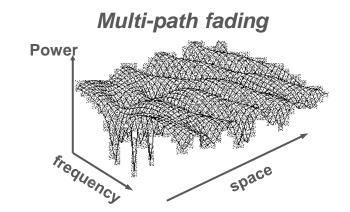
- Given by Tx-to-Rx distance

- Log-normal fading
 - Due to random variations in terrain (large scale)
 - Received signal strength in dB given by normal distribution
- > Fast fading
 - Random variations in environment
 - Often modeled by a Rayleigh distribution

Slow

RADIO-CHANNEL VARIATIONS

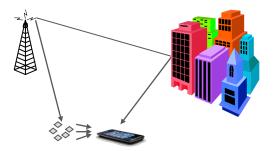


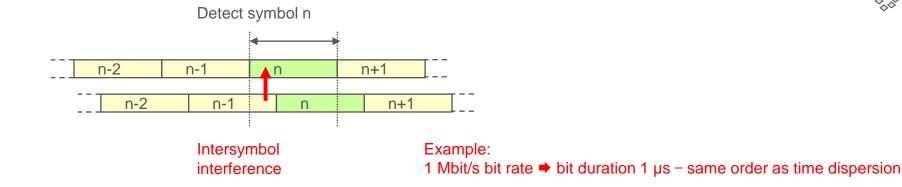

> Transmitted signal reflected in numerous objects

- Multiple delayed signal copies received
- 'Large' and 'small' time differences between components

> 'Small' delay difference

- components add constructively...or destructively
- Large number of components
 - central-limit theorem
 - Gaussian-distributed amplitude
 - Rayleigh-distributed power (Rayleigh-fading, fast fading)




Radio-channels – rapidly varying signal quality

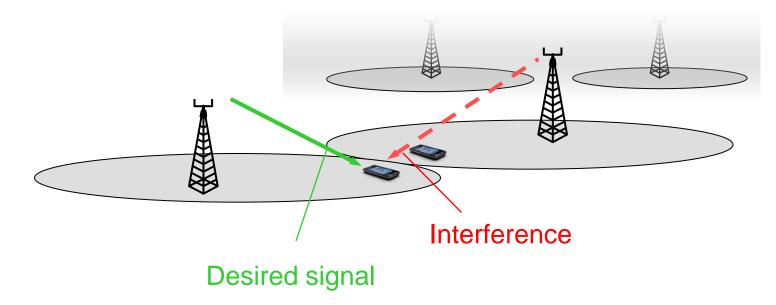
RADIO-CHANNEL VARIATIONS

'Large' delay difference

- Inter-symbol interference (ISI)

Handling time dispersion through...

...receiver-side signal processing (e.g equalizer)


...transmission scheme robust to time dispersion (e.g. OFDM)

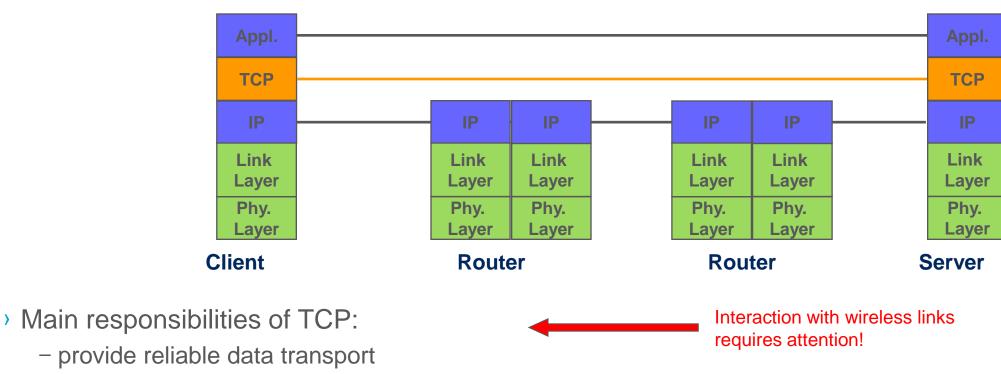
INTERFERENCE VARIATIONS

> Transmissions in neighboring cells cause interference

received signal quality affected by neighboring cell activity

TRAFFIC VARIATIONS

- > Traditional voice services
 - Low, ~10 kbit/s data rate
 - Fairly constant during the call
- Packet-data services
 - Behavior depends on type of service
 - Typically rapidly and randomly varying rate requirements ('all-or-nothing' resource requirement)

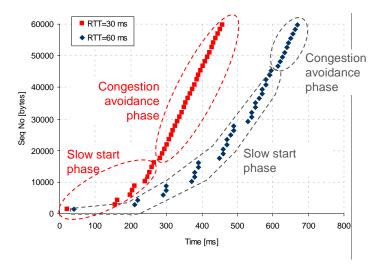


packet-switched NW

Packet-data systems – rapidly varying data rates

- avoid congestion in the network

- TOD leterestic and to and there are entire an entire set of the set of the set
 - TCP Internet's end-to-end transport layer protocol (non-real time)


TCP BASICS

> Error recovery and congestion control are intertwined

- lost packets used as congestion signal by TCP
 hide radio-link errors from TCP
- − Lost packets ⇒ timeout ⇒ slow start

> TCP congestion management

- Window = not-yet-ACKed packets in transmission
- Phase 1: Slow start
 - > Increase window by one on each received ACK
 - > window grows exponentially
- Phase 2: Congestion avoidance
 - > Increse window by 1/window_size on each ACK
 - > window grows linearly

TCP BASICS

=

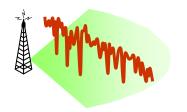
> TCP performance determined by data rate and latency

- High data rate alone not sufficient need low latency as well
- Delay-bandwidth product

Length of the pipe: Latency

Wid Rate

Width of the pipe: Data Rate


High data rate and low latency

RADIO CHANNELS AND PACKET DATA

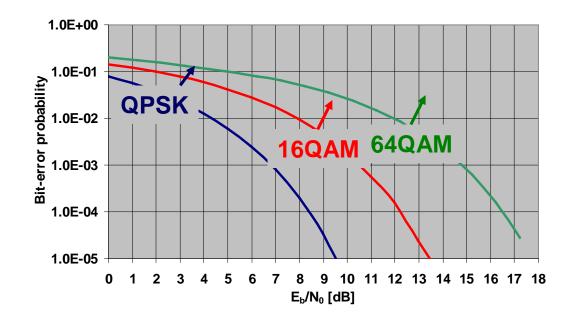
Radio-channel quality varies...
 ...distance to base station
 ...random environmental variations

Traffic pattern varies...
 ...user behavior
 ...server load

...interference variations

Adapt to and exploit channel and traffic variations!

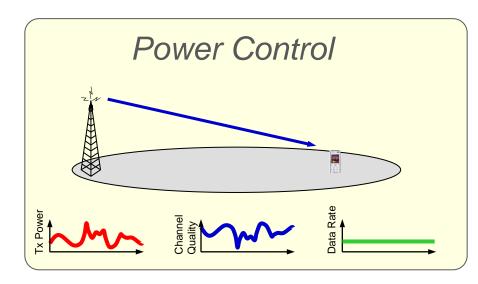
Ericsson Internal | 2013-04-22 | Page 17

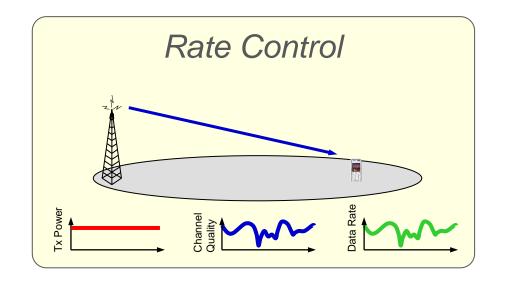

BASIC PRINCIPLES USED BY HSPA AND LTE

> $E_{\rm b}/N_0$ – fundamental quantity in communications

- $-E_{\rm b}$ received energy per information bit [J]
- $-N_0$ noise power spectral density [W/Hz]

- > Block-Error Rate vs $E_{\rm b}/N_0$
 - Practical schemes –
 BLER decreases with increasing *E*_b

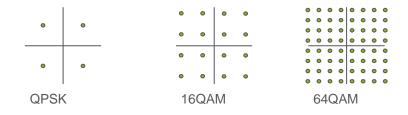




 $\rightarrow N_0$ is given

- Noise etc

• How to control E_b despite varying radio-channel quality? - $E_b = P \cdot T = P / R$

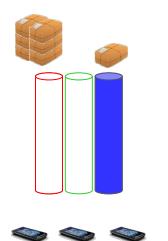


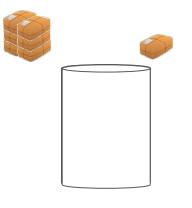
- > Packet-data services typically accept (short-term) data-rate variations
 - Internet has unpredictable data rates
 - Short-term variations acceptable even for most services with strict QoS requirements only cares about average data rate

> Rate control more efficient than power control

- Power amplifier runs at 'full power all the time'

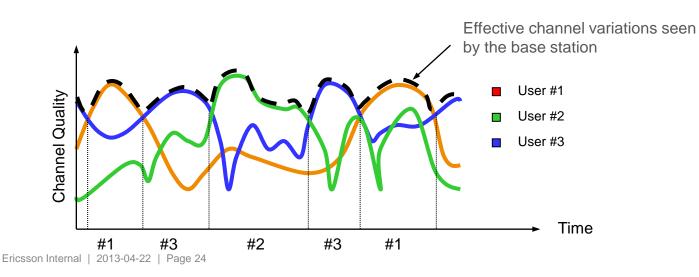
- > Data rate controlled through...
- > ...different channel coding rates
 - Advantageous channel conditions
 high code rate
 - Code rates from 1/3 to ~1
- ...different modulation schemes
 - Advantageous channel conditions
 higher-order modulation
- > ...different multi-antenna schemes




SHARED-CHANNEL TRANSMISSION

- Dedicated channel
 - Resources assigned at "call setup"
 - Independent of instantaneous traffic
 - "Circuit-switched"

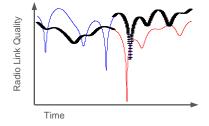
- Shared channel
 - Dynamic sharing of common resource
 - Adapts to instantaneous traffic situation
 - "Packet-switched"

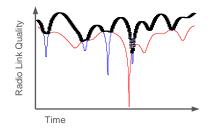


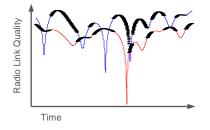
Shared channel – dynamic resource management

CHANNEL-DEPENDENT SCHEDULING ≶

> Scheduling determines at each time instant...

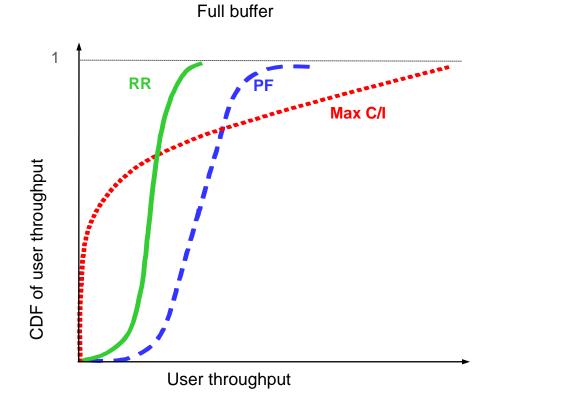

- ...to whom to assign the shared channel
- ... which data rate to use (rate adaptation)
- > Basic idea: transmit at fading peaks
 - Known as multi-user diversity

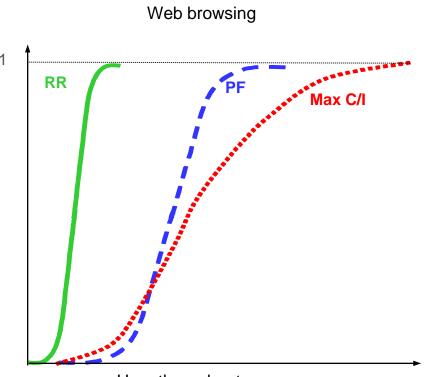



CHANNEL-DEPENDENT SCHEDULING

- > Round Robin (RR)
 - Cyclically assign the channel to users *without* taking quality conditions into account
 - Simple but poor performance

- > Max C/I
 - Assign the channel to the user with the best absolute quality
 - High system throughput but not fair
- Proportional Fair (PF)
 - Assign the channel to the user with the best relative quality
 - High throughput, fair


CHANNEL-DEPENDENT SCHEDULING


- > Good schedulers take radio and traffic variations into account
- Radio-channel variations
 - Schedule at fading peaks
- Traffic variations
 - Schedule when user has data
 - May take priorities into account
 - > Example: VoIP has higher priority than file download

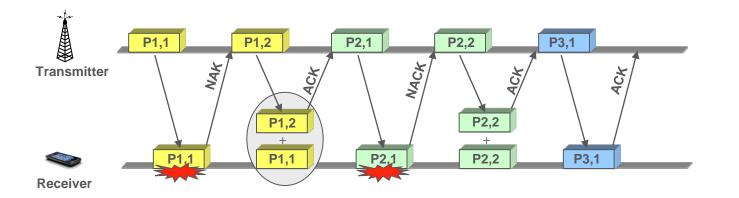
CHANNEL-DEPENDENT SCHEDULING ≶

CDF of user throughput

The larger the unfairness, the higher the system throughput...
 ...true for full buffers but realistic traffic complicates the picture

User throughput

HYBRID ARQ WITH SOFT COMBINING



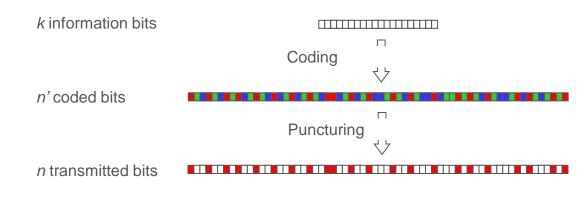
Retransmission of erroneously received packets

Fast
 no disturbance of TCP behavior

Soft combining of multiple transmission attempts

Soft combining
 improved performance

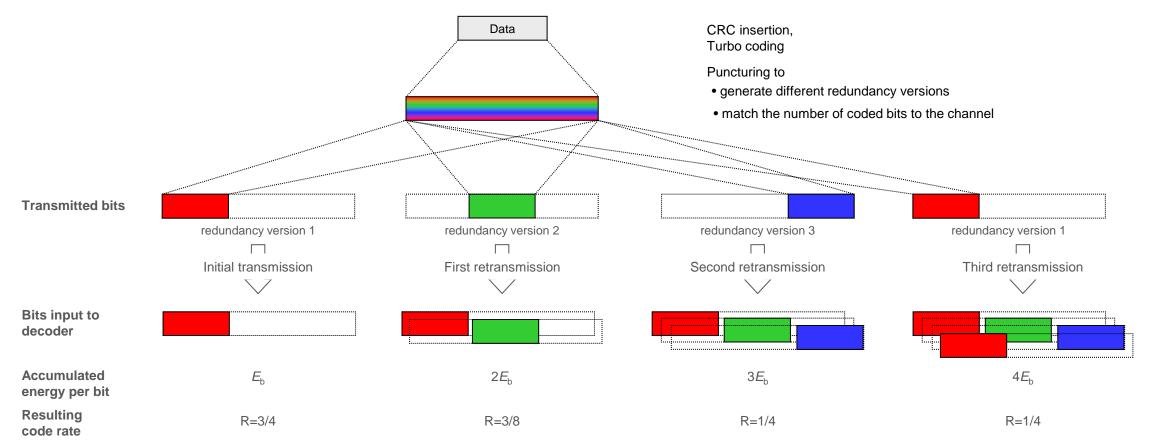
HYBRID ARQ WITH SOFT COMBINING



Coding

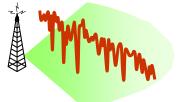
- Add redundancy at transmitter
- Exploit redundancy at receiver to correct (most) transmission errors
- Code rate R = k/n, code rate fine tuned by puncturing
- The lower the code rate R, the lower the error rate but the higher the overhead

> Hybrid-ARQ


- Correct most errors with coding
- Detect uncorrectable transmission errors, request retransmissions

HYBRID ARQ WITH SOFT COMBINING

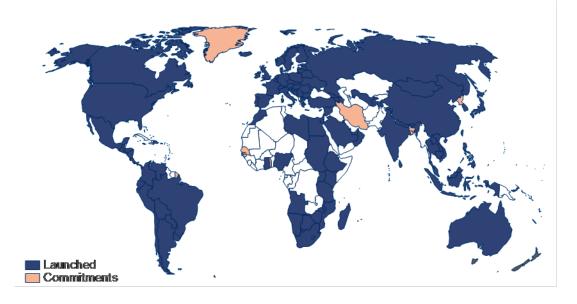
Incremental redundancy


Ericsson Internal | 2013-04-22 | Page 30

SUMMARY

> Radio channel quality is time varying

> Traffic pattern is time varying



Adapt to and exploit...

- variations in the radio channel quality
- variations in the traffic pattern
- ...instead of combating them!

SUMMARY – THE 3GPP ECOSYSTEM

333 HSPA operators in 139 countries...

2922 HSPA devices from 255 suppliers...

Source: GSA, WCIS/Informa, and Infonetics

FOR FURTHER INFORMATION...

Open the 3GPP specifications...

Available in English, Chinese, Korean and Japanese.

ERICSSON