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Outline 

•  The quarter wave plate 
•  Jones calculus; matrix formulation of how wave polarization 

changes when passing through polarizing component 
–  Examples: linear polarizer, quarter wave plate, Faraday rotation 

•  Statistical representation of incoherent/unpolarized waves 
–  Stokes vector and polarization tensor 

•  Poincare sphere 

•  Muller calculus;  
matrix formulation  
for the transmission of  
partially polarized waves 
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Modifying wave polarization in a quarter wave plate (1) 
•  Last lecture we noted that in birefringent crystals: 

–  there are two modes: O-mode and X-mode 

–  thus if               then  
the O-mode has larger phase velocity  

•  Next describe: Quarter wave plates   
–  uniaxial crystal; normal in z-direction 
–  length L in the x-direction: 

–  Let a wave travel in the x-direction, then k is in the x-direction and θ=π/2   
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Modifying wave polarization in a quarter wave plate (2) 
•  Plane wave ansats has to match dispersion relation 

–  when the wave enters the crystal it will slow down, this corresponds to a 
change in wave length, or k  

–  since the O- and X-mode travel at different speeds we write 

•  Assume: a linearly polarized wave enters the crystal 

–  the difference in wave number causes the O- and X-mode to drift in and 
out of phase with each other! 
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Modifying wave polarization in a quarter wave plate (3) 
•  The polarization when the wave exits the crystal at x=L   

   

•  Select plate width: 

–  This is circular polarization!  
–  The crystal converts linear to circular polarization (and vice versa) 
–  Called a quarter wave plate; a common component in optical systems 
–  But work only at one wave length – adapted for e.g. a specific laser! 
–  In general, waves propagating in birefringent crystal change polarization 

back and forth between linear to circular polarization 
–  Switchable wave plates can be made from liquid crystal 

•  angle of polarization can be switched by electric control system 

•  Similar effect is Faraday effect in magnetoactive media 
–  but the eigenmodes are circularly polarized 
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Optical systems 
•  In optics, interferometry, polarimetry, etc, there is an interest in 

following how the wave polarization changes when passing 
through e.g. an optical system. 

•  For this purpose two types of calculus have been developed;  
–  Jones calculus; only for coherent (polarized) wave 
–  Muller calculus; for both coherent, unpolarised and partially polarised 

•  In both cases the wave is given by vectors E and S (defined 
later) and polarizing elements are given by matrices J and M 

€ 

Eout = J • Ein
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The polarization of transverse waves 

•  Lets first introduce a new coordinate system representing 
vectors in the transverse plane, i.e. perpendicular to the k. 
–  Construct an orthonormal basis for {e1,e2,κ}, where κ=k/|k| 
–  The transverse plane is then given by {e1,e2}, where 

–  where α=1,2 and ei , i=1,2,3 is any basis for R3  
–  denote e1 the horizontal and e2 the vertical directions 

•  The electric field then has different component 
representations: Ei (for i=1,2,3) and Eα (for α=1,2) 

–  similar for the polarization vector, eM   
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Some simple Jones Matrixes 

•  In the new coordinate system the Jones matrix is 2x2: 

•  Example: Linear polarizer transmitting Horizontal polarization, (L,H) 

•  Example: Attenuator transmitting a fraction ρ of the energy 
–  Note: energy ~ ε0|E|2 
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Jones matrix for a quarter wave plate 

•  Quarter wave plates are birefringent  
(have two different refractive index) 
–  align the plate such that horizontal / veritical polarization 

(corresponding to O/X-mode) has wave numbers k1 / k2   

–  let the light enter the plate start at x=0 and exit at x=L   

–  where Ph stands for phaser 

•  Quarter wave plates change the relative phase by π/2   

–  usually we considers only relative phase and skip factor exp(ik1L) 
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Jones matrix for a rotated birefringent media 

•  If a birefringent media (e.g. quarter wave plates) is not aligned 
with the axis of our coordinate system… 
–  …then we may use a rotation matrix 

–  Let the eigenmode have directions as in the fig.: 

–  apply two rotation: first -θ and then +θ, i.e. no net rotation: 
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Jones matrix for a Faraday rotation 

•  Faraday rotation is similar to birefrigency, except that 
eigenmodes have circularly polarized eigenvector 

–  Trick: to identify the Jones matrix use  
a unitary matrix…(cmp. previous page) 
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Outline 

•  The quarter wave plate 
•  Set up coordinate system suitable for transverse waves 
•  Jones calculus; matrix formulation of how wave 

polarization changes when passing through polarizing 
component 
–  Examples: linear polarizer, quarter wave plate, Faraday rotation 

•  Statistical representation of incoherent/unpolarized waves 
–  Stokes vector and polarization tensor 

•  Poincare sphere 

•  Muller calculus; matrix formulation for the transmission of 
partially polarized waves 
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Incoherent/unpolarised 
•  Many sources of electromagnetic radiation are not coherent 

–  they do not radiate perfect harmonic oscillations (sinusoidal wave) 
•  over short time scales the oscillations look harmonic 
•  but over longer periods the wave look incoherent, or even stochastic 

–  such waves are often referred to as unpolarised  

•  To model such waves we will consider the electric field to be a stochastic 
process, i.e. it has  
–  an average: < Eα

 (t,x) >	


–  a variance: < Eα (t,x) Eβ

 (t,x) > 
–  a covariance: < Eα

 (t,x) Eβ
 (t+s,x+y) > 

•  In this chapter we will focus on the variance, which we will refer to as the 
intensity tensor   
  Iαβ = < Eα (t,x) Eβ (t,x) > 
 and the polarization tensor (where eM=E / |E| is the polarization vector) 
  pαβ = < eM

α (t,x) eM
β (t,x) > 
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The Stokes vector 
•  It can be shown that the intensity tensor is hermitian 

–  thus it can be described by four Stokes parameter { I, Q, U, V } : 

•  A basis for hermitian matrixes is a set of four unitary matrixes: 

–  where the last three matrixes are the Pauli matrixes 

•  Define the Stokes vector: SA=[ I, Q, U, V ] 
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Representations for the polarization tensor 

•  The polarization tensor has similar representation 
–  Note: trace(pαβ)=1, thus it is described by three parameter {q,u,v} : 

•  As we will show in the following slides the four terms above 
represent different types of polarization 
–  unpolarised (incoherent) 
–  linear polarization 
–  circular polarization 
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Examples 

•  For example consider: 
–  linearly polarised wave eM

α=[1,0]   

•  i.e. {q,u,v}={1,0,0} 
–  rotate linear polarization by 45o, eM

α=[1,1] / 21/2 

•  i.e. {q,u,v}={0,1,0} 
–  a circularly polarised wave, eM

α=[1,-i] / 21/2  

•  i.e. {q,u,v}={0,0,1} 
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The polarization tensor for unpolarized waves (1) 

•  What are the Stokes parameters for unpolarised waves? 
–  Let the eM

1 and eM
2 be independent stochastic variable 

–  Since eM
1 and eM

2 are uncorrelated the offdiagonal term vanish 

–  The vector eM is normalised: 
–  By symmetry (no physical difference between eM

1 and eM
2 ) 

–  the polarization tensor then reads 

–  i.e. unpolarised have  {q,u,v}={0,0,0}! 
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The polarization tensor for unpolarized waves (2) 

•  Alternative derivation; polarization vector for unpolarized waves 
–  Note first that the polarization vector is normalised 

–  the polarization is complex and stochastic: 
•  where θ, φ1 and φ2 are  

uniformly distributed in [0,2π]    

•  The corresponding polarization tensor 

–  here the average is over the three random variables θ, φ1 and φ2    

–  i.e. unpolarised have  {q,u,v}={0,0,0}! 

€ 

eM
2

= eM
1 2

+ eM
2 2

=1 ~ cos2(θ) + sin2(θ)

€ 

eM
1

eM
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

eiφ 1 cos(θ)
eiφ 2 sin(θ)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

pαβ =<
eM
1

eM
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

*

eM
1 eM

2( ) >=<
e− iφ 1 + iφ 1 cos(θ)cos(θ) e− iφ 1 + iφ 2 cos(θ)sin(θ)
e− iφ 2 + iφ 1 sin(θ)cos(θ) e− iφ 2 + iφ 2 sin(θ)sin(θ)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ >

€ 

pαβ =
1
2π( )3

dθ
0

2π

∫ dφ1
0

2π

∫ dφ2
0

2π

∫
cos2(θ) e− iφ 1 + iφ 2 cos(θ)sin(θ)

e− iφ 2 + iφ 1 sin(θ)cos(θ) sin2(θ)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
2
1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Poincare sphere 

•  The polarised part of a wave field describes the normalised  
vector {q/r,u/r,v/r} where                         is the degree of polarization  
–  since this vector is real and normalised it will represent points on a 

sphere, the so called Poincare sphere   

•  Thus, any transverse wave field can  
be described by  
–  a point on the Poincare sphere 
–  a degree of polarization, r   

•  A polarizing element induces a motion on the sphere 
–  e.g. when passing though a birefringent crystal we trace a circle on the 

Poincare sphere 

€ 

r = q2 + u2 + v 2

v 

u 

q 

r 

Poincare sphere 
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Outline 

•  Set up coordinate system suitable for transverse waves 
•  Jones calculus; matrix formulation of how wave 

polarization changes when passing through polarizing 
component 
–  Examples: linear polarizer, quarter wave plate, Faraday rotation 

•  Statistical representation of incoherent/unpolarized waves 
–  Stokes vector and polarization tensor 

•  Poincare sphere 

•  Muller calculus; a matrix formulation for the transmission 
of arbitrarily polarized waves 
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Weakly anisotropic media 

•  Next we will study Muller calculus for partially polarized waves 
•  We will do so for weakly anisotropic media:  

–  where ΔKαβ is a small perturbation 
–  although Muller calculus is not restricted to weak anisotropy 

•  The wave equation 

–  when ΔKij is a small, the 1st order dispersion relation reads: n2≈n0
2  

–  the left hand side can then be expanded to give 
€ 

n2δαβ −Kαβ( )E β = 0  ⇒   n2 − n0
2( )Eα = ΔKαβEα

€ 

Kαβ = n0
2δαβ + ΔKαβ

x 

small, <<1 

€ 

n2 − n0
2 = (n − n0)(n + n0) = (n − n0)n0 2 +

(n − n0)
n0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ≈ 2n0(n − n0)

2n0(n − n0)E
α ≈ ΔKαβEα



14-02-12 Electromagnetic Processes In Dispersive Media, Lecture 6 22 

The wave equation as an ODE 

•  Make an eikonal ansatz (assume k is in the x-direction): 

•  The wave equation can then be written as 

–  describe how the wave changes when propagating through a media! 
•  Wave equation for the intensity tensor: 

€ 

dIαβ

dx
=
d
dx

< EαE β* >= ... = iω
2cn0

ΔKαρδβσ − ΔKβσ*δαρ( )Iρσ
€ 

dEα

dx
= −i n0ω

c
Eα + i ω

2cn0
ΔKαβEα€ 

Eα = E0
α (t)exp ikx( ) = E0

α (t)exp iω
c
n0x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp i

ω
c
n − n0( )x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

dEα

dx
= iω

c
n0E

α + iω
c
n − n0( )Eα same expression as  

on previous page! 
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The wave equation as an ODE 
•  Solving the wave equation for Iαβ is not very convinient 
•  Instead, rewrite it in terms of the Stokes vector: 

–  we may call this the differential formulation of Muller calculus  
–  symmetric matrix ρAB describes non-dissipative changes in polarization 
–  and the antisymmetric matrix µAB describes dissipation (absorption) 

•  The ODE for SA has the analytic solution (cmp to the ODE y’=ky) 

–  where MAB is called the Muller matrix 
–  MAB represents entire optical components 

•  we have a component based Muller calculus  

€ 

dSA
dx

= ρAB −µAB( )SB € 

SA = τA
αβIαβ

€ 

ρAB =
iω
4cn0

ΔK H ,αρτA
βατB

ρβ − ΔK H ,σβτA
ρστB

βρ( )

µAB =
iω
4cn0

ΔK H ,αρτA
βατB

ρβ − ΔK H ,σβτA
ρστB

βρ( )

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

€ 

SA (x) = δAB + ρAB −µAB( )x +1/2 ρAC −µAC( ) ρCB −µCB( )x 2 + ...[ ]SB (0) =

= exp ρAB −µAB( )x[ ]SB (0) = MABSB (0)
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Examples of Muller matrixes 

•  For illustration only – don’t memorise! 

€ 

MAB
L,H =

1
2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Linear polarizer  
(Horizontal Transmission) 

€ 

MAB
L,45 =

1
2

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Linear polarizer  
(45o transmission) 

€ 

MAB
Q,H =

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Quarter wave plate 
(fast axis horizontal) 

€ 

MAB
Att (0.3) = 0.3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

Attenuating filter  
(30% Transmission) 
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Examples of Muller matrixes 

€ 

SA
out = MAB

Q,HMBC
L ,45SC

in

€ 

Sstep1 = MBC
L ,45 1 0 0 0[ ]T = 1 0 −1 0[ ]T

€ 

Sout = MQ,H 1 0 −1 0[ ]T = 1 0 0 −1[ ]T

•  In optics it is common to connect a series of  optical elements 
•  consider a system with: 

–  a linear polarizer and  
–  a quarter wave plate 

•  Insert unpolarised light, SA
in=[1,0,0,0] 

–  Step 1: Linear polariser transmit linearly polarised light 

–  Step 2: Quarter wave plate transmit circularly polarised light 


