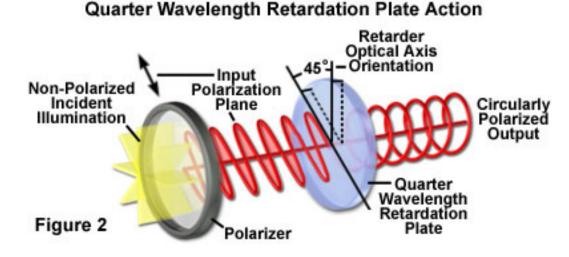


Polarized and unpolarised transverse waves, with applications to optical systems

T. Johnson

- The quarter wave plate
- Jones calculus; matrix formulation of how wave polarization changes when passing through polarizing component
 - Examples: linear polarizer, quarter wave plate, Faraday rotation
- Statistical representation of incoherent/unpolarized waves
 - Stokes vector and polarization tensor
 - Poincare sphere
- Muller calculus; matrix formulation for the transmission of partially polarized waves



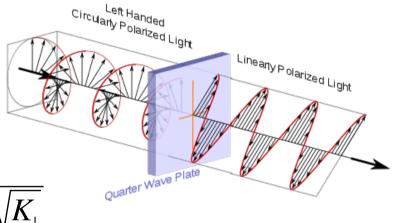
Modifying wave polarization in a quarter wave plate (1)

- Last lecture we noted that in birefringent crystals:
 - there are two modes: O-mode and X-mode

$$\begin{cases} n_O^2 = K_{\perp} \\ n_X^2 = \frac{K_{\perp}K_{\parallel}}{K_{\perp}\sin^2\theta + K_{\parallel}\cos^2\theta} \end{cases} \begin{cases} \mathbf{e}_O(\mathbf{k}) = (0, 1, 0) \\ \mathbf{e}_X(\mathbf{k}) \propto (K_{\parallel}\cos\theta, 0, K_{\perp}\sin\theta) \end{cases}$$

- thus if $K_{\parallel} > K_{\parallel}$ then $n_{O} \ge n_{X}$ the O-mode has larger phase velocity
- Next describe: Quarter wave plates

 - uniaxial crystal; normal m 2-on occur $\pi/2$ length *L* in the *x*-direction: $L = \frac{c}{\omega} \frac{\pi/2}{\sqrt{K_{\parallel}} \sqrt{K_{\perp}}}$



- Let a wave travel in the x-direction, then k is in the x-direction and $\theta = \pi/2$

$$\begin{cases} n_O^2 = K_{\perp} & \{ \mathbf{e}_O(\mathbf{k}) = (0, 1, 0) \\ n_X^2 = K_{\parallel} & \{ \mathbf{e}_X(\mathbf{k}) = (0, 0, 1) \} \end{cases}$$

Modifying wave polarization in a quarter wave plate (2)

- Plane wave ansats has to match dispersion relation
 - when the wave enters the crystal it will slow down, this corresponds to a change in wave length, or ${\bf k}$

$$k_{O} = \frac{\omega n_{O}}{c} = \frac{\omega}{c} \sqrt{K_{\perp}} , \quad k_{X} = \frac{\omega n_{X}}{c} = \frac{\omega}{c} \sqrt{K_{\parallel}}$$

since the O- and X-mode travel at different speeds we write

$$\mathbf{E}(t,x) = \Re \{ \mathbf{e}_{O} E_{O} \exp(ik_{O}x - i\omega t) + \mathbf{e}_{X} E_{X} \exp(ik_{X}x - i\omega t) \}$$

• Assume: a linearly polarized wave enters the crystal

$$\mathbf{E} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} = (\mathbf{e}_{o} + \mathbf{e}_{x}) \Rightarrow E_{o} = E_{x} = 1$$

$$\Rightarrow \mathbf{E}(t, x) = \Re \{ \mathbf{e}_{o} \exp(ik_{o}x - i\omega t) + \mathbf{e}_{x} \exp(ik_{x}x - i\omega t) \}$$

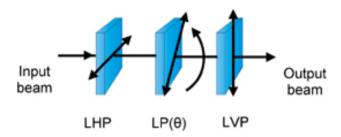
$$= \mathbf{e}_{o} \cos(k_{o}x - \omega t) + \mathbf{e}_{x} \cos(k_{o}x - \omega t + \Delta kx) , \quad \Delta k \equiv k_{x} - k_{o}$$

– the difference in wave number causes the O- and X-mode to drift in and out of phase with each other! Modifying wave polarization in a quarter wave plate (3)

- The polarization when the wave exits the crystal at x=L $\mathbf{E}(t,x) = \left[\mathbf{e}_{O}\cos(k_{O}L - \omega t) + \mathbf{e}_{X}\cos(k_{O}L - \omega t + \Delta kL)\right]$
- Select plate width: $L = \frac{c}{\omega} \frac{\pi/2}{\sqrt{K_{\parallel}} \sqrt{K_{\perp}}} \implies \Delta kL = \pi/2$ $\Rightarrow \mathbf{E}(t,x) = \left[\mathbf{e}_{0}\cos(k_{0}L - \omega t) - \mathbf{e}_{x}\sin(k_{0}L - \omega t)\right]$
 - This is circular polarization!
 - The crystal converts linear to circular polarization (and vice versa)
 - Called a <u>quarter wave plate</u>; a common component in optical systems
 - But work *only* at one wave length adapted for e.g. a specific laser!
 - In general, waves propagating in birefringent crystal change polarization back and forth between linear to circular polarization
 - Switchable wave plates can be made from liquid crystal
 - angle of polarization can be switched by electric control system
- Similar effect is <u>Faraday effect</u> in magnetoactive media
 - but the eigenmodes are circularly polarized

Optical systems

 In optics, interferometry, polarimetry, etc, there is an interest in following how the wave polarization changes when passing through e.g. an optical system.



- For this purpose two types of calculus have been developed;
 - Jones calculus; only for coherent (polarized) wave
 - Muller calculus; for both coherent, unpolarised and partially polarised
- In both cases the wave is given by vectors **E** and **S** (defined later) and polarizing elements are given by matrices *J* and *M*

$$\mathbf{E}_{out} = J \bullet \mathbf{E}_{in}$$
$$\mathbf{S}_{out} = M \bullet \mathbf{S}_{in}$$

The polarization of transverse waves

- Lets first introduce a new coordinate system representing vectors in the *transverse plane*, i.e. perpendicular to the **k**.
 - Construct an orthonormal basis for $\{e^1, e^2, \kappa\}$, where $\kappa = k/|k|$
 - The transverse plane is then given by $\{e^1, e^2\}$, where

$$\mathbf{e}^{\alpha} = e_i^{\alpha} \mathbf{e}_i$$

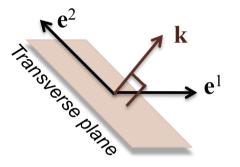
- where α =1,2 and \mathbf{e}_i , *i*=1,2,3 is any basis for \mathcal{R}^3
- denote e^{1} the horizontal and e^{2} the vertical directions
- The electric field then has different component representations: E_i (for i=1,2,3) and E^α (for α=1,2)

$$E_i = e_i^{\alpha} E^{\alpha}$$

- similar for the polarization vector, e_M

$$e_{M,i} = e_i^{\alpha} e_M^{\alpha}$$

The new coordinates provide 2D representations



• In the new coordinate system the Jones matrix is 2x2:

$$J^{\alpha\beta} = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix}$$
$$E^{\alpha}_{out} = J^{\alpha\beta}E^{\beta}_{in}$$

• Example: Linear polarizer transmitting Horizontal polarization, (L,H)

$$J^{\alpha\beta}{}_{L,H} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E_H \\ E_V \end{bmatrix} = \begin{bmatrix} E_H \\ 0 \end{bmatrix}$$

• Example: Attenuator transmitting a fraction ρ of the energy

- Note: energy ~
$$\varepsilon_0 |\mathbf{E}|^2$$

 $J^{\alpha\beta}_{Att}(\rho) = \sqrt{\rho} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \rightarrow \sqrt{\rho} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} E_H \\ E_V \end{bmatrix} = \sqrt{\rho} \begin{bmatrix} E_H \\ E_V \end{bmatrix}$

Jones matrix for a quarter wave plate

- Quarter wave plates are birefringent (have two different refractive index)
 - align the plate such that horizontal / veritical polarization (corresponding to O/X-mode) has wave numbers k^1 / k^2

$$\begin{bmatrix} E_H(x) \\ E_V(x) \end{bmatrix} = \begin{bmatrix} E_H(0)\exp(ik^1x) \\ E_V(0)\exp(ik^2x) \end{bmatrix}$$

- let the light enter the plate start at x=0 and exit at x=L

$$\mathbf{E}(L) = \begin{bmatrix} e^{ik^{1}L} & 0\\ 0 & e^{ik^{2}L} \end{bmatrix} \begin{bmatrix} E_{H}(0)\\ E_{V}(0) \end{bmatrix} = J_{Ph}\mathbf{E}(L)$$

- where *Ph* stands for *phaser*
- Quarter wave plates change the relative phase by $\pi/2$

$$k^{1}L - k^{2}L = \pm \pi/2 \rightarrow J_{Q} = e^{ik^{1}L} \begin{bmatrix} 1 & 0 \\ 0 & \pm \end{bmatrix}$$

- usually we considers only relative phase and skip factor $exp(ik^{1}L)$

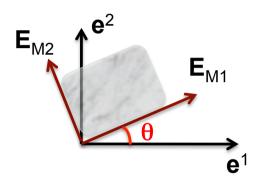
Jones matrix for a rotated birefringent media

- If a birefringent media (e.g. quarter wave plates) is not aligned with the axis of our coordinate system...
 - ...then we may use a rotation matrix

$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \rightarrow R^{-1}(\theta) = R(-\theta)$$

- Let the eigenmode have directions as in the fig.:

$$\mathbf{E}(x) = E_{M1}(x) \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} + E_{M2}(x) \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix}$$



- apply two rotation: first $-\theta$ and then $+\theta$, i.e. no net rotation:

$$\mathbf{E}(x) = R(\theta)R(-\theta) \left(E_{M1}(x) \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix} + E_{M2}(x) \begin{bmatrix} -\sin(\theta) \\ \cos(\theta) \end{bmatrix} \right) = R(\theta) \begin{bmatrix} E_{M1}(x) \\ E_{M2}(x) \end{bmatrix} = R(\theta) \begin{bmatrix} e^{ik^{1}x} & 0 \\ 0 & e^{ik^{2}x} \end{bmatrix} \begin{bmatrix} E_{M1}(0) \\ E_{M2}(0) \end{bmatrix} \rightarrow J_{Ph} = R(\theta) \begin{bmatrix} e^{ik^{1}x} & 0 \\ 0 & e^{ik^{2}x} \end{bmatrix}$$

• Faraday rotation is similar to birefrigency, except that eigenmodes have *circularly polarized eigenvector*

$$\mathbf{E}(x) = E_{M1}(x) \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i \end{bmatrix} + E_{M2}(x) \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -i \end{bmatrix}$$

Trick: to identify the Jones matrix use a unitary matrix...(cmp. previous page)

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix} \implies U^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}$$

$$E(x) = U^{-1} U \left(E_{M1}(x) \begin{bmatrix} 1 \\ i \end{bmatrix} + E_{M2}(x) \begin{bmatrix} 1 \\ -i \end{bmatrix} \right) = U^{-1} \begin{bmatrix} E_{M1}(x) \\ E_{M2}(x) \end{bmatrix} = U^{-1} \begin{bmatrix} e^{ik^{1}x} & 0 \\ 0 & e^{ik^{2}x} \end{bmatrix} \begin{bmatrix} E_{M1}(0) \\ E_{M2}(0) \end{bmatrix} \implies J_{FR} = U^{-1} \begin{bmatrix} e^{ik^{1}x} & 0 \\ 0 & e^{ik^{2}x} \end{bmatrix}$$

Polarizer

Modulating magnetic field

Acdulatin

Outline

- The quarter wave plate
- Set up coordinate system suitable for transverse waves
- Jones calculus; matrix formulation of how wave polarization changes when passing through polarizing component
 - Examples: linear polarizer, quarter wave plate, Faraday rotation
- Statistical representation of incoherent/unpolarized waves
 - Stokes vector and polarization tensor
 - Poincare sphere
- **Muller calculus**; matrix formulation for the transmission of partially polarized waves

Incoherent/unpolarised

- Many sources of electromagnetic radiation are not coherent
 - they do not radiate perfect harmonic oscillations (sinusoidal wave)
 - over short time scales the oscillations look harmonic
 - but over longer periods the wave look incoherent, or even stochastic
 - such waves are often referred to as unpolarised
- To model such waves we will consider the electric field to be a stochastic process, i.e. it has
 - an average: $\langle E^{\alpha}(t, \mathbf{x}) \rangle$
 - a variance: $\langle E^{\alpha}(t,\mathbf{x}) E^{\beta}(t,\mathbf{x}) \rangle$
 - a covariance: $\langle E^{\alpha}(t,\mathbf{x}) E^{\beta}(t+s,\mathbf{x}+\mathbf{y}) \rangle$
- In this chapter we will focus on the variance, which we will refer to as the intensity tensor

 $I^{\alpha\beta} = \langle E^{\alpha}(t,\mathbf{x}) E^{\beta}(t,\mathbf{x}) \rangle$

and the polarization tensor (where $\mathbf{e}_M = \mathbf{E} / |\mathbf{E}|$ is the polarization vector)

$$p^{\alpha\beta} = \langle e_M^{\alpha}(t, \mathbf{x}) e_M^{\beta}(t, \mathbf{x}) \rangle$$

- It can be shown that the intensity tensor is hermitian
 - thus it can be described by four Stokes parameter { I, Q, U, V } :

$$I^{\alpha\beta} = \frac{1}{2} \begin{bmatrix} I+Q & U-iV\\ U+iV & I-Q \end{bmatrix}$$

• A basis for hermitian matrixes is a set of four unitary matrixes:

$$\tau_1^{\alpha\beta} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \tau_2^{\alpha\beta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \tau_3^{\alpha\beta} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \tau_4^{\alpha\beta} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

- where the last three matrixes are the Pauli matrixes

$$I^{\alpha\beta} = \frac{1}{2} \begin{bmatrix} I \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + Q \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + U \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + V \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \end{bmatrix}$$

• Define the Stokes vector: $S_A = [I, Q, U, V]$

$$I^{\alpha\beta} = \frac{1}{2} \tau_A^{\alpha\beta} S_A$$
 with inverse: $S_A = \tau_A^{\alpha\beta} I^{\alpha\beta}$

Representations for the polarization tensor

The polarization tensor has similar representation

- Note: $trace(p^{\alpha\beta})=1$, thus it is described by three parameter $\{q,u,v\}$:

$$p^{\alpha\beta} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + q \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + u \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + v \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \end{bmatrix}$$

- As we will show in the following slides the four terms above represent different types of polarization
 - unpolarised (incoherent)
 - linear polarization
 - circular polarization

Examples

• For example consider:

- linearly polarised wave $e_M^{\alpha} = [1, 0]$

$$p^{\alpha\beta} = e^{\alpha}_{M} e^{\beta^{*}}_{M} = \begin{bmatrix} 1\\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix} = \frac{1}{2} \left(\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} + 1 \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix} \right)$$

- i.e. $\{q, u, v\} = \{1, 0, 0\}$
- rotate linear polarization by 45°, $e_M^{\alpha} = [1, 1] / 2^{1/2}$

$$p^{\alpha\beta} = e^{\alpha}_{M} e^{\beta*}_{M} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 1 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right)$$

• i.e. $\{q, u, v\} = \{0, 1, 0\}$

- a circularly polarised wave, $e_M^{\alpha} = [1, -i] / 2^{1/2}$

$$p^{\alpha\beta} = e^{\alpha}_{M} e^{\beta^{*}}_{M} = \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \begin{bmatrix} 1 & -i \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix} = \frac{1}{2} \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + 1 \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \right)$$

• i.e. $\{q, u, v\} = \{0, 0, 1\}$

The polarization tensor for unpolarized waves (1)

- What are the Stokes parameters for unpolarised waves?
 - Let the $e_M^{\ l}$ and $e_M^{\ 2}$ be independent stochastic variable

$$p^{\alpha\beta} = < \begin{pmatrix} e_M^1 \\ e_M^2 \end{pmatrix}^* \begin{pmatrix} e_M^1 & e_M^2 \end{pmatrix} > = \begin{bmatrix} < e_M^1 * e_M^1 > & < e_M^1 * e_M^2 > \\ < e_M^2 * e_M^1 > & < e_M^2 * e_M^2 > \\ < e_M^2 * e_M^1 > & < e_M^2 * e_M^2 > \end{bmatrix}$$

- Since $e_M^{\ l}$ and $e_M^{\ 2}$ are uncorrelated the offdiagonal term vanish

$$p^{\alpha\beta} = \begin{bmatrix} < |e_M^1|^2 > 0 \\ 0 & < |e_M^2|^2 > \end{bmatrix}$$

- The vector \mathbf{e}_M is normalised: $\left| e_M^1 \right|^2 + \left| e_M^2 \right|^2 = 1$

- By symmetry (no physical difference between $e_M^{\ l}$ and $e_M^{\ 2}$) $|e_M^1|^2 = |e_M^2|^2 = 1/2$
- the polarization tensor then reads

$$p^{\alpha\beta} = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- i.e. unpolarised have $\{q, u, v\} = \{0, 0, 0\}!$

The polarization tensor for unpolarized waves (2)

Alternative derivation; polarization vector for unpolarized waves
 Note first that the polarization vector is normalised

$$\left|\mathbf{e}_{M}\right|^{2} = \left|e_{M}^{1}\right|^{2} + \left|e_{M}^{2}\right|^{2} = 1 \sim \cos^{2}(\theta) + \sin^{2}(\theta)$$

- the polarization is complex and stochastic:
 - where θ , ϕ_1 and ϕ_2 are uniformly distributed in [0,2 π]

$$\begin{pmatrix} e_M^1 \\ e_M^2 \end{pmatrix} = \begin{pmatrix} e^{i\phi_1}\cos(\theta) \\ e^{i\phi_2}\sin(\theta) \end{pmatrix}$$

• The corresponding polarization tensor

$$p^{\alpha\beta} = < \begin{pmatrix} e_M^1 \\ e_M^2 \end{pmatrix}^* \begin{pmatrix} e_M^1 & e_M^2 \end{pmatrix} > = < \begin{pmatrix} e^{-i\phi_1 + i\phi_1}\cos(\theta)\cos(\theta) & e^{-i\phi_1 + i\phi_2}\cos(\theta)\sin(\theta) \\ e^{-i\phi_2 + i\phi_1}\sin(\theta)\cos(\theta) & e^{-i\phi_2 + i\phi_2}\sin(\theta)\sin(\theta) \end{pmatrix} >$$

– here the average is over the three random variables $\theta,\,\varphi_1$ and φ_2

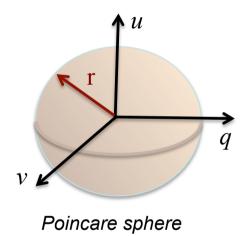
$$p^{\alpha\beta} = \frac{1}{(2\pi)^3} \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} d\phi_1 \int_{0}^{2\pi} d\phi_2 \begin{pmatrix} \cos^2(\theta) & e^{-i\phi_1 + i\phi_2} \cos(\theta) \sin(\theta) \\ e^{-i\phi_2 + i\phi_1} \sin(\theta) \cos(\theta) & \sin^2(\theta) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- i.e. unpolarised have $\{q, u, v\} = \{0, 0, 0\}!$

Poincare sphere

- The polarised part of a wave field describes the normalised vector $\{q/r, u/r, v/r\}$ where $r = \sqrt{q^2 + u^2 + v^2}$ is the degree of polarization
 - since this vector is real and normalised it will represent points on a sphere, the so called *Poincare sphere*

- Thus, any transverse wave field can be described by
 - a point on the Poincare sphere
 - a degree of polarization, r



- A polarizing element induces a motion on the sphere
 - e.g. when passing though a birefringent crystal we trace a circle on the Poincare sphere

- Set up coordinate system suitable for transverse waves
- Jones calculus; matrix formulation of how wave polarization changes when passing through polarizing component
 - Examples: linear polarizer, quarter wave plate, Faraday rotation
- Statistical representation of incoherent/unpolarized waves
 - Stokes vector and polarization tensor
 - Poincare sphere
- **Muller calculus**; a matrix formulation for the transmission of arbitrarily polarized waves

- Next we will study Muller calculus for partially polarized waves
- We will do so for weakly anisotropic media:

 $K^{\alpha\beta} = n_0^{2} \delta^{\alpha\beta} + \Delta K^{\alpha\beta}$

- where $\Delta K^{\alpha\beta}$ is a small perturbation
- although Muller calculus is *not* restricted to weak anisotropy
- The wave equation

$$(n^2\delta^{\alpha\beta} - K^{\alpha\beta})E^{\beta} = 0 \implies (n^2 - n_0^2)E^{\alpha} = \Delta K^{\alpha\beta}E^{\alpha}$$

- when ΔK_{ij} is a small, the 1st order dispersion relation reads: $n^2 \approx n_0^2$

- the left hand side can then be expanded to give

$$n^{2} - n_{0}^{2} = (n - n_{0})(n + n_{0}) = (n - n_{0})n_{0} \left[2 + \frac{(n - n_{0})}{n_{0}}\right] \approx 2n_{0}(n - n_{0})$$

 $2n_0(n-n_0)E^{\alpha} \approx \Delta K^{\alpha\beta}E^{\alpha}$

The wave equation as an ODE

• Make an eikonal ansatz (assume k is in the x-direction):

$$E^{\alpha} = E_0^{\alpha}(t)\exp(ikx) = E_0^{\alpha}(t)\exp\left(i\frac{\omega}{c}n_0x\right)\exp\left(i\frac{\omega}{c}(n-n_0)x\right)$$

$$\frac{dE^{\alpha}}{dx} = i\frac{\omega}{c}n_0E^{\alpha} + i\frac{\omega}{c}(n-n_0)E^{\alpha}$$

same expression as on previous page!

• The wave equation can then be written as

$$\frac{dE^{\alpha}}{dx} = -i\frac{n_0\omega}{c}E^{\alpha} + i\frac{\omega}{2cn_0}\Delta K^{\alpha\beta}E^{\alpha}$$

- describe how the wave changes when propagating through a media!

• Wave equation for the intensity tensor:

$$\frac{dI^{\alpha\beta}}{dx} = \frac{d}{dx} < E^{\alpha} E^{\beta^*} > = \dots = \frac{i\omega}{2cn_0} \left(\Delta K^{\alpha\rho} \delta^{\beta\sigma} - \Delta K^{\beta\sigma^*} \delta^{\alpha\rho} \right) I^{\rho\sigma}$$

The wave equation as an ODE

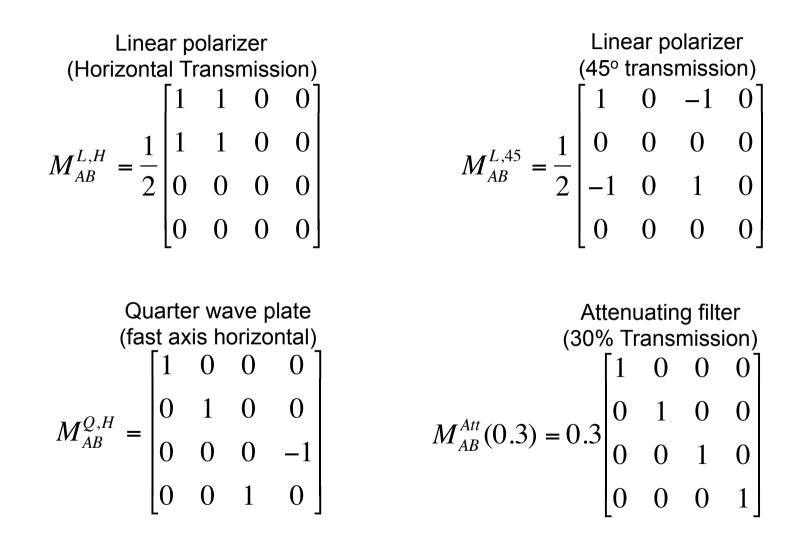
- Solving the wave equation for $I^{\alpha\beta}$ is not very convinient
- Instead, rewrite it in terms of the Stokes vector: $S_A = \tau_A^{\alpha\beta} I^{\alpha\beta}$

$$\frac{dS_A}{dx} = (\rho_{AB} - \mu_{AB})S_B \qquad \begin{cases} \rho_{AB} = \frac{i\omega}{4cn_0} \left(\Delta K^{H,\alpha\rho} \tau_A^{\beta\alpha} \tau_B^{\rho\beta} - \Delta K^{H,\sigma\beta} \tau_A^{\rho\sigma} \tau_B^{\beta\rho}\right) \\ \mu_{AB} = \frac{i\omega}{4cn_0} \left(\Delta K^{H,\alpha\rho} \tau_A^{\beta\alpha} \tau_B^{\rho\beta} - \Delta K^{H,\sigma\beta} \tau_A^{\rho\sigma} \tau_B^{\rho\rho}\right) \end{cases}$$

- we may call this the differential formulation of Muller calculus
- symmetric matrix $ho_{
 m AB}$ describes non-dissipative changes in polarization
- and the antisymmetric matrix μ_{AB} describes dissipation (absorption)
- The ODE for S_A has the analytic solution (cmp to the ODE y' = ky) $S_A(x) = \left[\delta_{AB} + (\rho_{AB} - \mu_{AB})x + 1/2(\rho_{AC} - \mu_{AC})(\rho_{CB} - \mu_{CB})x^2 + ...\right]S_B(0) = \exp\left[(\rho_{AB} - \mu_{AB})x\right]S_B(0) = M_{AB}S_B(0)$
 - where M_{AB} is called the *Muller matrix*
 - $-M_{AB}$ represents entire optical components
 - we have a component based Muller calculus

Examples of Muller matrixes

• For illustration only – don't memorise!

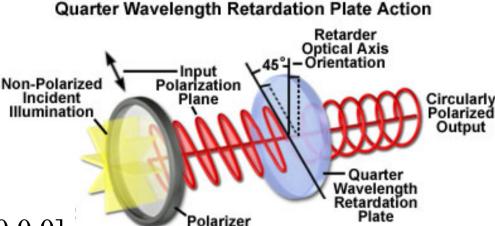


Examples of Muller matrixes

- In optics it is common to connect a series of optical elements
- consider a system with:
 - a linear polarizer and
 - a quarter wave plate

$$S_A^{out} = M_{AB}^{Q,H} M_{BC}^{L,45} S_C^{in}$$

• Insert unpolarised light, $S_A^{in}=[1,0,0,0]$



- Step 1: Linear polariser transmit linearly polarised light

$$S^{step1} = M_{BC}^{L,45} \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^{T}$$

- Step 2: Quarter wave plate transmit circularly polarised light

$$S^{out} = M^{Q,H} \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T$$