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1 Probability Theory and Transforms

1.1 Exercise 1.2

X is a random variable chosen from X1 with probability a and from X2 with
probability b. Calculate E[X] and σX for α = 0.2 and b = 0.8. X1 is an expo-
nentially distributed r.v. with parameter λ1 = 0.1 and X2 is an exponentially
distributed r.v. with parameter λ2 = 0.02. Let the r.v. Y be chosen from
D1 with probability α and from D2 with probability b, where D1 and D2 are
deterministic r.v.s. Calculate the values D1 and D2 so that E[X] = E[Y ] and
σX = σY .
Solution: a) We directly apply the conditional expectation formula:

E[X] = αE[X1] + bE[X2].

We can do this since the expectation is a raw moment – not central. The proof
is straightforward: we have

fX(x) = αfX1
(x) + bfX2

(x)→

→ E[X] =
∫∞

0
xfX(x)dx = α

∫∞
0
xfX1

(x)dx+ b
∫∞

0
xfX2

(x)dx =

= αE[X1] + bE[X2].

We then replace the given data

E[X] = α
1

λ1
+ b

1

λ2
= 0.2

1

0.1
+ 0.8

1

0.02
= 42. (1)

We can not calculate the variance (or the standard deviation) in the same way,
since this is a central moment. Instead, we proceed with calculating the expected
square of the r.v. X, which is a raw moment:

E[X2] =
∫∞

0
x2fX(x)dx = α

∫∞
0
x2fX1(x)dx+ b

∫∞
0
x2fX2(x)dx =

= αE[X2
1 ] + bE[X2

2 ].

Replacing the data we get

E[X] = α
2

λ2
1

+ b
2

λ2
2

= 0.2
2

0.12
+ 0.8

2

0.022
= 4040. (2)

Finally, we use the relation between the expectation, square mean and variance

σ2
X = E[X2]− [E[X]]

2
= 4040− 422 → σX = 47.70. (3)

b) We have E[Y ] = αd1 + bd2 and E[Y 2] = αd2
1 + bd2

2. So the system of
equations becomes

0.2d1 + 0.8d2 = 42,

0.2d2
1 + 0.8d2

2 = 4040
(4)

Solving this 2 by 2 non-linear system we obtain the solution. Notice that because
of the second order of the equation we may in general have more than one
solutions.
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1.2 Exercise 1.3

X is a discrete stochastic variable, pk = P (X = k) = ak

k! e
−a, k = 0, 1, 2, ... and

a is a positive constant.
a) Prove that

∑∞
k=0 pk = 1.

b) Determine the z-transform (generating function) P (z) =
∑∞
k=0 z

kpk.

c) Calculate E[X],Var[X] and E[X(X − 1)...(X − r + 1)], r = 1, 2, ... with
and without using z-transforms.
Solution a) We have

∞∑
k=0

pk =

∞∑
k=0

ak

k!
e−a = e−a

∞∑
k=0

ak

k!
= e−aea = 1.

Notice this useful and well-known infinite series summation.
b) We replace the definition of the mass function and gradually have:

P (z) =

∞∑
k=0

zk
ak

k!
e−a = e−a

∞∑
k=0

zk
ak

k!
= e−a

∞∑
k=0

(za)k

k!
= e−aeaz = e−a(1−z).

c) First, we try without the z-transform, i.e. using the definitions in the
probability domain. We start from the third sentence, using the definition of
expectation:

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (5)

E[X(X − 1)...(X − r + 1)] =
∑∞
k=0 k(k − 1)...(k − r + 1)pk =

=
∑∞
k=0 k(k − 1)...(k − r + 1)a

k

k! e
−a =

∑∞
k=0

ak

(k−r)!e
−a =

= e−aar
∑∞
k=0

a(k−r)

(k−r)! = are−aea = ar.

Then clearly, we have (by setting r = 1) E[X] = a1 = a. And, finally,

Var[X] = E[X2]−[E[X]]
2

= E[X2]−a2 = E[X(X−1)]+E[X]−a2 = a2+a−a2.

We try, now, with the z-transform. We differentiate r times the definition of
the z-transform:

dr

dzr
P (z) =

dr

dzr

∞∑
k=0

zkpk =

∞∑
k=0

k(k − 1)...(k − r + 1)zk−rpk

If we replace z = 1 we get

dr

dzr
P (z)

}
z=1

= E[X(X − 1)...(X − r + 1)].

We, then, calculate,

dr

dzr
P (z)

}
z=1

= are−a(1−1) = ar.
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1.3 Exercise 1.4

Xi’s are independent Poisson distributed random variables, thus, pk =
aki
k! e
−ai ,

k = 0, 1, 2, ..., and each ai, i = 1, 2, ..., n is a positive constant. Give the proba-
bility distribution function of X =

∑n
i=1.

Solution: This problem indicates the usefulness of the z-transform in the
calculation of the distribution of the sum of variables. We have proven that
the ZT of the sum of independent random variables is the product of
their individual z-transforms. Thus,

P (z) =

n∏
i=1

Pi(z) =

n∏
i=1

e−ai(1−z) = e
∑n

i=1−ai(1−z) = e−α(1−z),

where α =
∑n
i=1−ai. This proves that the distribution is also Poisson with

parameter α, i.e. the sum of parameters. The proof is based on the uniqueness
of z-transform1. As a result, the distribution function will be

pX(k) =
αk

k!
e−α

1.4 Exercise 1.5

X is a positive stochastic continuous variable with probability distribution func-
tion (PDF)

F (x) = P (X ≤ x) =

{
0, x < 0,
1− e−ax, x ≥ 0.

a) Give the probability density function f(x) = dF (x)/dx.
b) Give F (x) = P (X > x).
c) Calculate the Laplace Transform f∗(s) = E[e−sX ] =

∫∞
0
e−sxf(x)dx.

d) Calculate the expected values m = E[X], E[Xk], k = 0, 1, 2, ..., the vari-
ance σ2

X , the standard deviation σX and the coefficient of variation c = σ/m,
with and without the transform F ∗(s).

Solution: a) For the calculation of f(x) we just need to differentiate:

f(x) = dF (x)/dx = d(1− e−ax)/dx = ae−ax.

b) The complementary PDF is simply given as

FX(x) = P (X > x) = 1− P (X ≤ x) = 1− FX(x) = e−ax.

c) Calculation of the Laplace Transform with simple integration

f∗(s) =

∞∫
0

e−sxf(x)dx =

∞∫
0

e−sxae−axdx = a

∞∫
0

e−x(s+a)dx =
a

s+ a
.

d) We proceed first, without the help of Laplace transforms, using the defi-
nition of the expectation

E[X0] =
∫∞

0
x0f(x)dx =

∫∞
0
f(x)dx = 1.

1or the 1-1 correspondence between the mass function and the ZT
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E[Xk] =
∫∞

0
xkf(x)dx =

∫∞
0
xkae−axdx = a−1

a

∫∞
0
xk(e−ax)′dx =

= k
∫∞

0
xk−1e−axdx = k

a

∫∞
0
xk−1ae−axdx =

∫∞
0
xk−1f(x)dx =

= k
aE[Xk−1].

This is a recursive formula that enables the calculation of any moment. We
have:

E[Xk] =
k

a
E[Xk−1] =

k

a

k − 1

a
E[Xk−2] =

k

a

k − 1

a
..

1

a
E[X0] =

k

a

k − 1

a
..

1

a
=
k!

ak

which gives, simply, E[X] = 1/a, for k = 1. The variance is calculated through
the usual formula, and the raw moments are taken from above:

σ2 = E[X2]− [E[X]]2 =
2

a2
−
(

1

a

)2

= 1/a2.

so the standard deviation is simply the square root of the variance, 1/a, and
the coefficient of variation is 1. Notice that this is special for the exponential
distribution.

We try, now, with the help of the Laplace transforms.

E[Xk] = (−1)k dk

dsk
f∗(s) = (−1)k dk

dsk
a
s+a = (−1)kak!

(s+a)k+1 .

We find this formula by differentiating k times the Laplace transform and re-
placing s = 0. The rest follows with simple replacement k = 1, 2, ...

1.5 Exercise 1.6

Xi’s are independent, exponentially distributed random variables with a mean
value of 1/a, a > 0, i = 1, 2, ..., n. Calculate P (X ≤ x) and P (X ≥ x) where

a) X = min(X1, X2, ..., Xn),
b) X = max(X1, X2, ..., Xn).
Solution: a) The key point in this exercise is the fact that the random

variables are independent (mutually independent). We gradually have:

P (X ≤ x) = P (min(X1, X2, ..., Xn) ≤ x) = 1− P (min(X1, X2, ..., Xn) > x)

= 1− P (X1 > x,X2 > x, ...,Xn > x) = 1−
∏n
i=1 P (Xi > x)

= 1−
∏n
i=1 e

−ax = 1− e−
∑n

i=1 ax = 1− e−nax

This shows that the minimum of exponentially distributed random variables is
also an exponential variable and its rate is the sum of the individual rates.

b) Similar calculations:

P (X ≤ x) = P (max(X1, X2, ..., Xn) ≤ x) = P (X1 ≤ x,X2 ≤ x, ...,Xn ≤ x)

=
∏n
i=1 P (Xi ≤ x) =

∏n
i=1(1− e−ax) = (1− e−ax)n.

Cleary, the variable X is, now, not exponential.
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2 Balance equations, birth-death processes, con-
tinuous Markov Chains

2.1 Exercise 3.2

Consider a birth-death process with 3 states, where the transition rate from state
2 to state 1 is q21 = µ and q23 = λ. Show that the mean time spent in state 2
is exponentially distributed with mean 1/(λ+ µ).2

Solution: Suppose that the system has just arrived at state 2. The time until
next ”birth“ – denoted here as TB – is exponentially distributed with cumu-
lative distribution function FTB

(t) = 1 − e−λt. Similarly, the time until next
”death“ – denoted here as TD – is exponentially distributed with cumulative
distribution function FTD

(t) = 1− e−µt. The random variables TB and TD are
independent.

Denote by T2 the time the system spends in state 2. The system will depart
from state 2 when the first of the two events (birth or death) occurs. Conse-
quently we have T2 = min{TB , TD}. We, then, apply the result from exercise
1.6, that is the minimum of independent exponential random variables is an
exponential random variable. We can actually show this:

FT2(t) = Pr{T2 ≤ t} =
= Pr{min{TB , TD} ≤ t} =
= 1− Pr{min{TB , TD} > t} =
= 1− Pr{TB > t, TD > t} =
= 1− Pr{TB > t} · Pr{TD > t} =
= 1− e−λt · e−µt =
= 1− e−(λ+µ)t

so T2 is exponentially distributed with parameter λ+ µ.
Notice that we can generalize to the case with more than two transition

branches. This exercise reveals the property of continuous time Markov chains,
that is, the time spent on a state is exponentially distributed.

2.2 Exercise 3.3

Assume that the number of call arrivals between two locations has Poisson distri-
bution with intensity λ. Also, assume that the holding times of the conversations
are exponentially distributed with a mean of 1/µ. Calculate the average number
of call arrivals for a period of a conversation.

Solution: Denote by NC the number of arriving calls during the period of one
conversation. Denote by T the duration of this conversation. Given that T = t,
NC |T = t is Poisson distributed with parameter λ · t so the probability mass
function of the number of calls will be

Pr{arriving calls within t = k} = Pk(t) =
(λt)k

k!
e−λt.

2This exercise is similar to Exercise 6 from Chapter 1: ”The minimum of independent
exponential variables is exponential.”
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with an average number of calls: E[NC |T = t] = λt.
Moreover T is exponentially distributed, with parameter µ so the density

function will be:
fT (t) = µe−µt.

We apply the conditional expectation formula:

E[NC ] =

∞∫
0

E[NC |T = t] · fT (t)dt =

∞∫
0

λtµe−µtdt = λ

∞∫
0

tµe−µtdt =
λ

µ
.

2.3 Exercise 3.4

Consider a communication link with a constant rate of 4.8kbit/sec. Over the
link we transmit two types of messages, both of exponentially distributed size.
Messages arrive in a Poisson fashion with λ = 10 messages/second. With prob-
ability 0.5 (independent from previous arrivals) the arriving message is of type
1 and has a mean length of 300 bits. Otherwise a message of type 2 arrives with
a mean length of 150 bits. The buffer at the link can at most hold one message
of type 1 or two messages of type 2. A message being transmitted still takes a
place in the buffer.

a) Determine the mean and the coefficient of variation of the service time of
a randomly chosen arriving message.

b) Determine the average times in the system for accepted messages of type
1 and 2.

c) Determine the message loss probabilities for messages of type 1 and 2.

Solution:
a) We have a link with a constant transmission rate. So the service time

distributions follow the packet length distributions. Consequently, the service
times of both packet types are exponential with mean values of

• Type 1: E[T1] = 300
4800 = 1

16 sec,

• Type 2: E[T2] = 150
4800 = 1

32 sec.

As a result the parameters of the exponential distributions are µ1 = 16 and
µ2 = 32, respectively. A random arriving packet is of Type 1 or Type 2 with
probability 0.5. We apply the conditional expectation 3:

E[T ] =
1

2
E[T1] +

1

2
E[T2] =

3

64

Similarly, we calculate the mean square:

E[T 2] =
1

2
E[T 2

1 ] +
1

2
E[T 2

2 ] =
1

2

2

µ2
1

+
1

2

2

µ2
2

= 16−2 + 32−2 =
5

4
· 16−2.

The variance of T is derived from V ar[T ] = E[T 2]− (E[T ])2. Then we compute
the standard deviation σT as σT =

√
V ar[T ], and finally the coefficient of

variation is given as: cT = σT

E[T ] .

3This is similar to exercise 1.2
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S0S11 S12 S22

λ/2

λ/2µ1 λ/2

µ2 µ2

λ/2

λ/2

Figure 1: State Diagram for Exercise 3.4

b) For this part of the exercise, we need to draw the Markov Chain (Fig. 1)
and solve it in the steady state. The state space must be defined in such a
way that we can guarantee that all transitions – from state to state – have an
exponential rate. We choose here to define such a Markov chain with 4 states:
State 0; Empty buffer.
State 11; 1 packet of Type 1.
State 21; 1 packet of Type 2.
State 22; 2 packets of Type 2.
Then we solve the balance equations in the local form:

µ2P22 = λ/2P21

µ2P21 = λ/2P0

µ1P11 = λ/2P0

P0 + P11 + P21 + P22 = 1(norm. equation)

Solution:
P0 = 0.670, P21 = 0.105, P22 = 0.016, P11 = 0.209.

An accepted message of Type 1 can only arrive at state 0, otherwise it is rejected.
So its the average service time will be E[T1].
An accepted message of Type 2 can arrive at states 0 and 21, otherwise it is
rejected. Then, the average service time will be (E[T2]P0 + 2E[T2]P(21)/(P0 +
P21). 4

c) The loss probabilities are equal to the probabilities of the system being in
BLOCKING states, for each of the two packet types. We underline that this is
always true for homogeneous Markov chains, that is, Markov chains where the
arrival rates do not depend on the system state.

2.4 Exercise 3.5

Consider a Markovian system with discouraged job arrivals. Jobs arrive to a
server in a Poisson fashion, with an intensity of one job per 7 seconds. The
jobs observe the queue. They do NOT join the queue with probability lk if they
observe k jobs in the queue. lk = k/4 if k < 4, or 0, otherwise. The service
time is exponentially distributed with mean time of 6 seconds.

a) Determine the mean number of customers in the system, and
b) the number of jobs served in 100 seconds.

Solution:
4The occurrence of acceptance reduces the sample space to two states only. Then the

probabilities are normalized.
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S0 S1 S2 S3 S4 S5

λ λ 3λ/4 2λ/4 λ/4 0

µ µ µ µ µ

Figure 2: State diagram for Exercise 3.5

a) This is a simple model but requires careful design. After building the
correct state diagram, the solution is found, based on the LOCAL balance equa-
tions.

We have a system with 6 states. State space: Sk : k jobs in the system. The
system diagram is shown in Fig. 2).

Balance Equation System:

λP0 = µP1

λP1 = µP2

3λ/4P2 = µP3

λ/2P2 = µP4

λ/4P2 = µP5∑5
k=1 Pk = 1

Solution: P0 ≈ 0.3, and the remaining probabilities are computed based on
P0 and the equations above. After determining the state probabilities, we derive
the average number of customers in the system through

E[N ] =

5∑
k=0

k · Pk

We find E[N ] ≈ 1.43.
b) We have, here, a system with different arrival rates in each state. These

systems are defined as non-homogeneous. However, the service rate is constant.
The server is busy with probability (1−P0). When it is busy, it serves jobs. The
service rate is µ = 1/6sec−1. As a result, the server can serve 100 · µ · (1− P0)
jobs in 100 seconds on AVERAGE!

2.5 Exercise 3.6

Consider a network node that can serve 1 and store 2 packets altogether. Packets
arrive to the node according to a Poisson process. Serving a packet involves two
independent sequentially performed tasks: the ERROR CHECK and the packet
TRANSMISSION to the output link. Each task requires an exponentially dis-
tributed time with an average of 30msec. Give, that we observe that the node is
empty in 60% of the time, what is the average time spend in the node for one
packet?

Solution: As always, we need to construct the state diagram is such a way
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S0 S10 S20

S11 S21

λ λ

λ

λ

λ
µ µ µ µ

Figure 3: State Diagram for Exercise 3.6

that all transitions rates are guaranteed to be exponential. The selected state
space:

S0: Empty network node,
S11: One packet under transmission,
S10: One packet under error-check,
S20: One packet under error-check and one buffered,
S21: One packet under transmission and one buffered,

The state diagram is shown in Fig. 3. We can form the global balance equations
parameterized by λ. Then we apply information that is given: P0 = 0.6; This
extra information enables the solution of the system of equations, and leads to
the calculation of λ:

λP0 = µP11

(λ+ µ)P11 = µP10

(λ+ µ)P10 = λP0 + µP21

µP21 = λP11 + µP22

P11 + P10 + P21 + P22 = 1− P0 = 0.4

Solution: P10 ≈ 0.1636, P11 ≈ 0.1337, P20 ≈ 0.0365, P21 ≈ 0.0663, λ ≈ 7.63.
For the calculation of the total average system time for a packet, we apply
Little’s formula.

N = λeff · E[Tsys]→ E[Tsys] =
N

λeff
=

1 · (P10 + P11) + 2 · (P21 + P22)

λeff
.

We always apply the effective arrival rate at Little’s formula, because the formula
needs the actual average arrival rate at the system, excluding possible drops.
Here, the effective rate is not equal to λ, since we have packet drops. However,
since the arrival rate for this system does not change with time, the effective
arrival rate is simply:

λeff = λ · (P0 + P10 + P11).

10



3 Chapter 4 – Queuing Systems

3.1 Exercise 4.1

Packets arrive to a communication node with a single output link according to
a Poisson Process. Give the Kendall notation for the following cases:

1. the packet lengths are exponentially distributed, the buffer capacity at the
node is infinite

2. the packet length is fixed, the buffer can store n packets

3. the packet length is L with probability pL amd l with probability pl and
there is no buffer in the node

Solution: Kendall Notation

1. Arrival Process

2. Service Time

3. Number of Servers

4. Number of Total Positions (servers and queues)

5. Population

The Poisson arrivals (M) and the Single server (1) are fixed: M/?/1/?/?

1. M/M/1, as the buffer is infinite

2. M/D/1/n+1, as the service is deterministic and the buffer is n

3. M/G/1/1, as the service is general and there is no buffer

3.2 Exercise 4.2

Give the Kendall notation for the following systems. Telephone calls arrive to
a PBX with C output links. The calls arrive as Poisson process and the call
holding times are exponentially distributed.

1. Calls arriving when all the output links are busy are blocked

2. Up to c calls can wait when all the output links are blocked

Solution:

1. M/M/C/C

2. M/M/C/C+c

3.3 Exercise 4.3

Why is it not a good idea to have a G/G/10/12/5 System? Solution: 10 servers

for 5 users!
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4 Exercise 4.4

Which system provides the best performance, an M/M/3/300/100 or an
M/M/3/100/100?

Solution: They have the same performance, since the users fit to both
queues. Of course, the first system wastes buffer positions!

4.1 Exercise 4.5

A PBX was installed to handle the voice traffic generated by 300 employees in
an office. Each employee on average makes 2 calls per hour with an average call
duration of 4.5 minutes The PBX has 90 outgoing links.

1. What is the offered load to the PBX?

2. What is the utilization of the outgoing links? Assume that calls arriving
when all the links are busy are queued up.

Solution: Offered Load ρ→ λT = 300 · 2
60 · 4.5 = 45 Erlang. Generally, the

actual load is not the offered load.
Link Utilization:

actual load

# servers

The existence of an infinite queue here means that no load is dropped, or
that the offered load is the actual load. So,

utilization =
offered load

90
=

45

90
= 0.5

.
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S0 S1 S2
... Sk Sk+1 ...

λ λ λ λ λ

µC µC µC µC µC

Figure 4: System diagram for the M/M/1 chain of exercise 5.1

5 Chapter 5 – M/M/1 Systems

5.1 Exercise 5.1

In a computer network a link has a transmission rate of C bit/s. Messages arrive
to this link in a Poisson fashion with rate λ messages per second. Assume that
the messages have exponentially distributed length with a mean of 1/µ bits and
the messages are queued in a FCFS fashion if the link is busy.
a) Determine the minimum required C for given λ and µ such that the average
system time (service time + waiting time) is less than a given time T0.

Solution: System Description

• Single communication link: C bits per second

• Poisson arrivals: λ messages per second

• Exponential Service times: E[T ] = E[X]/C = 1/(µC), so the exponential
rate is µC.

• First Come First Served policy

• Infinite Queue5

This is a typical M/M/1 System. We see the system diagram in Fig. 4.
We first derive the state distribution (steady-state) of this system through the
solution of the balance equations. We define ρ = λ/(µC). For a no-loss system,
ρ is the OFFERED and, at the same time, the ACTUAL load.

λP0 = (µC)P1 → P1 = ρP0

λP1 = (µC)P2 → P2 = ρP1 = ρ2P0

λP2 = (µC)P3 → P3 = ρP2 = ρ3P0

.............................................................................
λPk = (µC)Pk+1 → Pk+1 = ρPk = ρkP0

........................................

Then, we calculate the P0 through the normalization equation:

∞∑
k=0

Pk = 1→
∞∑
k=0

ρkP0 = 1→ P0

∞∑
k=0

ρk = 1→ P0 ·
1

1− ρ
= 1→ P0 = 1− ρ.

5If no buffer capacity is mentioned, we always assume that this is infinite.
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Finally, the state distribution is given as

Pk = (1− ρ)ρk.

We, now, derive the average number of messages in the system, using the state
distribution:

N =
∑∞
k=0 kPk =

∑∞
k=0 k(1− ρ)ρk = (1− ρ)ρ

∑∞
k=0 kρ

k−1 =

= (1− ρ)ρ
∑∞
k=0

dρk

dρ = (1− ρ)ρ
d(

∑∞
k=0 ρ

k)
dρ = (1− ρ)ρd(1/(1−ρ))

dρ = ρ
1−ρ .

In order to solve the first question we can use the LITTLE’s formula:

N = λeffE[Ttotal]→ E[Ttotal] =
N

λ
=
ρ/(1− ρ)

λ
=
λ/(µC)/(1− λ/(µC))

λ
,

since λeff = λ, so, finally,

E[Ttotal] =
1

(µC)− λ
.

The minimum required C is determined by:

1

µC − λ
≤ T0 → µC − λ ≥ T−1

0 → C ≥ λ+ T−1
0

µ
.

6 Exercise 5.5

Consider a queuing system with a single server. The arrival events can be
modeled with Poisson distribution, but two customers arrive at the system at
each arrival event. Each customer requires an exponentially distributed service
time.

1. Draw the state diagram

2. Determine pk using local balance equations

3. Let P (z) =
∑∞
k=0 z

kpk. Calculate P (z) for the system. Note, that P (z)
must be finite for |z| < 1, and we know P (1) = 1.

4. Calculate the mean number of customers in the system with the help of
P (z) and compare it with the one of the M/M/1 system.

Solution: The system can be described by an M/M/1 model, since there is a
single server, the service times are exponential service and the arrival process
is Poisson. We must notice, however, that this Poisson Process models arrival
events, but the events consist of two customer arrivals. (The departure events
are still one-by-one, though.)

As always, for a Markovian System we must guarantee that all transitions
are exponential. We define the usual state space: Sk : k customers in the
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S0 S1 S2 S3
... Sk Sk+1 ...

λ λ λ λ

µ µ µ µ µ µ

Figure 5: System diagram for the M/M/1 chain of exercise 5.5

system. Then, the state diagram is straightforward. Special care must be taken
on determining the transitions and rates from state to state.

Departure rate = µ

Arrival Event rate = λ

Clearly, the average customer arrival rate is 2λ and is NOT Poisson! What IS
Poisson is the group arrival rate. We also DEFINE ρ = λ

µ . This is neither the
offered nor the actual load. We just use ρ to define this fraction.
The system diagram is given in Fig. 5.
Local Balance Equations:

λP0 = µP1

λPk−2 + λPk−1 = µPk, k ≥ 2

We can go ahead and solve them numerically. Alternatively, we can use
the ZT methodology, since we only want to compute the average number of
customers.

We consider the parametric local balance equation:

µPk = λPk−1 + λPk−2 →

→
∑∞
k=2 z

kµPk =
∑∞
k=2 z

k(λPk−1 + λPk−2)

→ µ(P (z)− zP1 − P0) =
∑∞
k=2 λz

kPk−1 +
∑∞
k=2 λz

kPk−2

→ µ(P (z)− zP1 − P0) = λz
∑∞
k=2 λz

k−1Pk−1 + λz2
∑∞
k=2 λz

k−2Pk−2

→ µ(P (z)− zP1 − P0) = λz(P (z)− P0) + λz2P (z)

We solve the equation with respect to P (z)

P (z) =
µP0 + µzP1 − λzP0

µ− λz − λz2
=
P0 + zP1 − ρzP0

1− ρz − ρz2
. (6)

We need to apply two conditions that HOLD, in order to determine the unknown
terms above. The first condition comes from the balance equation that we did
not consider. We replace P1 = ρP0 in (6), and obtain:

P (z) =
P0

1− ρz − ρz2
. (7)
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The second condition comes from the NORMALIZATION in the probability or
in the Z-domain:

∞∑
k=0

Pk = 1, or, P (z = 1) = 1.

Replacing that in (7) we obtain P0 = 1− 2ρ, so finally

P (z) =
1− 2ρ

1− ρz − ρz2
(8)

Finally, we need to compute the mean number of customers. We have

N =

[
dP (z)

dz

]
z=1

.

Proof:[
dP (z)

dz

]
z=1

=

[
d
∑∞
k=0 z

kPk
dz

]
z=1

=

[ ∞∑
k=0

kzk−1Pk

]
z=1

=

∞∑
k=0

kPk = N.

So, this is what we will do. We differentiate the derived ZT in (8):

dP (z)

dz
=

(−1)(1− 2ρ)(−ρ− 2ρz)

(1− ρz − ρz2)2

Replacing z = 1 we obtain

N =
3ρ

1− 2ρ
=

3λ

µ− 2λ
.

The typical M/M/1 system with the same average customer arrival rate (2λ)
and service rate (µ) has NM/M/1 = ρ

1−ρ , where ρ is its offered load, and is equal

to ρ = 2λ/µ. So, finally,

NM/M/1 =
2λ

µ− 2λ

so it is different, and, actually, less. Why?

7 Exercise 5.6

A queuing system has one server and infinite queuing capacity. The number of
customers in the system can be modeled as a birth-death process with λk = λ
and µk = kµ, k = 0, 1, 2, ... thus, the server increases the speed of the service
with the number of customers in the queue. Calculate the average number of
customers in the system as a function of ρ = λ/µ.

Solution: The system is an M/M/1 queue, since it has infinite buffer, 1
server, and Markovian arrival and departure process. However, as we can see, it
is not a typical M/M/1 case, as the service rates depend on the current system
state. The system diagram is shown in Fig. 6. We need to solve the system of
balance equations:
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S0 S1 S2
... Sk Sk+1 ...

λ λ λ λ λ

µ 2µ 3µ kµ (k + 1)µ

Figure 6: System diagram for the M/M/1 chain of exercise 5.6

λP0 = µP1 → P1 = ρP0

λP1 = 2µP2 → P2 = 1
2ρP1 = 1

2ρ
2P0

λP2 = 3µP3 → P3 = 1
3ρP2 = 1

2·3ρ
3P0

.........................................................................
λPk−1 = kµPk → Pk = 1

kρPk−1 = ... = 1
k!ρ

kP0

.........................................................................∑∞
k=0 Pk = 1 (normalization)

From the last general equation and the normalization equation we obtain
the state distribution:

∞∑
k=0

ρk

k!
P0 = 1→ P0e

ρ = 1→ P0 = e−ρ.

so finally, for each k

Pk =
ρk

k!
e−ρ

so the state distribution is POISSON! Then, we can calculate the average num-
ber of customers from the state distribution

N =

∞∑
k=0

kPk = ρ

or simply say that the average is ρ, from the Poisson distribution.
From LITTLE we can, also, calculate the average system time

E[Ttotal] =
N

λ
=

1

µ
.

This means that the arriving customers only stay in the system for an average
time equal to the service time!6

8 Exercise 5.7

Customers arrive to a single server system in groups of 1,2,3 and 4 customers.
The number of customers per group is i.i.d. There are in total 4 places in the

6This is equivalent to the case where there is no queue and each customer is served in
parallel with the others, so actually this system is equivalent to an M/M/∞ system!
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system. If a group of customers does not fit into the system, none of the members
of the group joins the queue. 10% of the customers arrive in a group of 1, 20%
of the customers arrive in groups of 2, 30% in a group of 3 and 40% in a group
of 4 customers. The average number of arriving customers is 75 customers
per hour, the interarrival time between groups is exponentially distributed. The
service time is exponentially distributed with a mean of 0.5 minutes.

1. Give the Kendall notation of the system and draw the state transition
diagram.

2. Calculate the average number of customers in the queue and the mean
waiting time per customer.

3. Calculate the probability that the system is full and the probability that a
customer arriving in a group of k customers can not join the queue.

4. Calculate the probability that an arriving customer in general can not join
the queue and the probability that an arriving group of customers can not
join the queue.

5. What is the average waiting time for a customer arriving in a group of 3
customers?

Solution: This is a very interesting problem that reveals the problems when
the arriving process is complex and not straightforward so it must be derived.

First, we give the Kendall notation of the system. We have:

• Exponential GROUP inter-arrival times, so the arrival time will be Marko-
vian.7

• The service times are exponentially distributed

• The system has a single server

• The total capacity is 4

Consequently, the Kendall notation is M/M/1/4.
We must draw the state transition diagram. We consider the typical state space
where Sk means ”k customers in the system”. As a result the system has 5
states in total. The service rates are always the same, with

µ =
1

E[Ts]
=

1

0.5/60
= 120h−1.

The difficulty lies in deriving the arrival transition rates. We are given
that the number of customers per group is i.i.d. We assume, naturally, that
the GROUP arrival process is HOMOGENEOUS, that is, groups arrive in each
state with the same rate! Also, since the inter-arrival times between GROUP ar-
rivals are exponential we conclude that the GROUP arrivals is a Poisson process.

7It is our task to find an appropriate state space where the event arrival process is Poisson.
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Figure 7: System diagram for the M/M/1 chain of exercise 5.6

We are given that the number of customers per group is an i.i.d. process,
but we are NOT given the distribution. Let

q1, q2, q3, q4

denote the probabilities that a random arriving group contains 1,2,3,4 customers
respectively.

Let λG denote the Poisson group arrival rate. Then, the individual rates
for each groups is ALSO a Poisson process, based on the Poisson split property,
with rates

λGq1, λGq2, λGq3, λGq4.

For any i = 1, 2, 3, 4,
λG · qi

defines the (average) rate of arrivals for group’s of type i, and, consequently,

λG · qi · i

defines the (average) rate of arrivals of customers belonging to group of type i.
Based on the given data from the exercise regarding the ratio of customers

arriving in any of the groups, we obtain the following equations:

λGq1 · 1 = 10% · 75

λGq2 · 2 = 20% · 75

λGq3 · 3 = 30% · 75

λGq4 · 4 = 40% · 75

From the above it is clear that q1 = q2 = q3 = q4 → qi = 1
4 , ∀i = 1, 2, 3, 4.

Finally, using any of the above equations we compute the group arrival rate:

λG = 30 groups / hour

We can now complete the state diagram (Fig. 7). Then, we solve the LOCAL
balance equations, to define the state probabilities.

We can compute BOTH the average number of customers in the system, and
the average number of customers in the queue:

Nqueue = 1 · P2 + 2 · P3 + 3 · P4

N = 1 · P1 + 2 · P2 + 3 · P3 + 4 · P4

For the average waiting time, we could apply the LITTLE result. For that
we need the effective customer arrival rate, which is different from the nominal,
since there are losses in the system.
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It is important to notice again that the system is HOMOGENEOUS in group
arrivals but not in customer arrivals.

We have

λeff = P0λG·(q1+2q2+3q3+4q4)+P1λG·(q1+2q2+3q3)+P2λG·(q1+2q2)+P3λG·(q1).

Then, from LITTLE we compute first the system time, N = λeffE[T ], and
then the average waiting time will be W = E[T ]− E[Ts].

The probability that the system is full (as seen by an independent observer)
is simply P4.

The probability that a customer of a group k does not join the queue is, actu-
ally, the probability that the whole particular group does not join the queue.
Since the system is homogeneous in group arrivals (a random group SEES state
distribution),

Pr(a random group 1 is blocked) = P4

Pr(a random group 2 is blocked) = P4 + P3

Pr(a random group 3 is blocked) = P4 + P3 + P2

Pr(a random group 4 is blocked) = P4 + P3 + P2 + P1

An arriving customer in general, belongs to groups 1,2,3,4 with probabilities
10%, 20%, 30% and 40%. So given these probabilities, he follows the group
blocking probabilities:

Pr(a random customer is blocked) =

= 40% · (P1 + P2 + P3 + P4) + 30% · (P2 + P3 + P4) + 20%2 · (P3 + P4) + 10% · P4

An arriving group of customers is blocked with probability

Pr(a random group is blocked) =

=
∑4
i=1 Pr{a random group has i customers} · Pr{a random group i is blocked} =

= P4 + P3 · 3/4 + P2 · 1/2 + P1 · 1/4.

A customer that arrives in group of 3 customers MEANS that the arrived
group sees either state 0 or state 1, otherwise there is no mean of WAITING
time, since the group is rejected. The arrivals are homogeneous in groups, so
the groups see state 0, 1 with probabilities P0, P1, respectively. So

W 3 =
P0

P0 + P1
·W 0

3 +
P1

P0 + P1
·W 1

3

where the two waiting times are

W 0
3 =

1

3
(0.5 + 1 + 0), W 1

3 =
1

3
(0.5 + 1 + 1.5)
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