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Wave Response of Ideal Media 

T. Johnson 



•  Introduction to the concept of a response 
•  First example: Response of electron gas  

–  Changing the speed of light 
–  Dispersion 

•  Polarization of atoms and molecules (brief) 
–  Response of crystals 

•  Medium of oscillators 
–  Detailed study of the resonance region 

•  Hermitian / antihermitian parts of the dielectric tensor 
•  Application of the Plemej formula 

•  Dielectric response for plasmas 
–  Magnetoionic theory (anisotropic/gyrotropic) 
–  Cold plasmas (Alfven velocity) 
–  Warm plasmas (Landau damping) 

Overview 
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•  When an electromagnetic wave passes through a media,  
e.g. air, water, copper, a crystal or a plasma, then: 
–  The electromagnetic fields exert a force on the particles of the media 
–  The force may then “pull” the particles to induce 

•  charge separation ρ         drive E-field in Poisson’s equation 

–  E-field is coupled to the B-field through Maxwells equations 
•  currents J           drive E- & B-fields through Ampere’s law 

–  The fields induced by the media are called the dielectric response   
–  The total fields are: 

What do we mean by dielectric response? 
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€ 

∇ • Emedia = ρmedia /ε 0

€ 

∇ × Bmedia −
1
c 2
∂Emedia

∂t
= µ0Jmedia

€ 

E = Eexternal +Emedia

B = Bexternal +Bmedia

See previous lecture for  
representation in terms of: 
•  Polarization P 
•  Magnetization M 



Equations for calculating the dielectric response 
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Current and charge drive the dielectric response 

€ 

∇ • Emedia = ρmedia /ε 0

€ 

∇ × Bmedia −
1
c 2
∂Emedia

∂t
= µ0Jmedia

E- & B-field exerts a force on the particles in media 

€ 

m˙ v = q(E + v × B)

The induced motion of charge particles form a current 
and a charge density 

 (n=particle density) 

€ 

Jmedia = qnv
species
∑

  

€ 

∂
∂t
ρmedia +∇  Jmedia = 0

The respons can be quantified in e.g. the conductivity σ	



€ 

Ji(k,ω) = σij (k,ω)E j (k,ω)

solve for v ! 



Response of electron gas to oscillating E-field 
•  The response of a media is driven by the electric and magnetic 

forces on the particles in the media 

•  Example: Consider electron response to electric field oscillations 
(e.g. high frequency, long wave length waves in a plasma) 
–  Align x-axis with the electric field: 
–  Electron equation of motion: 

–  The current driven in the medium (let n be the electron density) 

–  Thus we have derived the conductivity of this media 
–  Note: σ(ω), i.e. the media is dispersive! 
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€ 

E(t) = exEx (t)

€ 

m˙ ̇ x (t) = qEx (t)

€ 

x(ω) = −
q

mω 2 Ex (ω )

€ 

Jx (t) ≡ qn˙ x (t)

€ 

Jx (ω) = i q
2n
mω

Ex (ω )

€ 

σ(ω) = i nq
2

mω

Use Newton’s equations, or quantum mechanics, to describe how  
the charged particles moves and thus the response of the medium 



Response of electron gas to oscillating E-field (2) 
•  This media is isotropic (the same response in all directions) 

–  Proof 1: rotate E-field to align with y-axis or z-axis and repeat calculation 
–  Proof 2: use argument that the medium have no “intrinsic direction” (there is no 

static the magnetic field, no structure like in a crystal, or similar), thus the media 
have to be isotropic 

–  Being an isotropic media the components of the conductivity tensor are: 

where ωp is known as the plasma frequency 

•  Relations to: 
–  susceptibility: 

–  polarisation response: 

–  dielectric tensor: 
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σij (ω) = σ(ω)δij   ⇒   σij (ω) = i q
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ω p
2

ω
δij
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χij (ω ) ≡
i

ε 0ω
σ ij (ω) =

iσ(ω)
ε 0ω

δ ij = −
ω p

2

ω 2 δ ij
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α ij (ω ) ≡ iωσ ij (ω) = −ε 0ω p
2δ ij
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Kij (ω) ≡ δij + χij (ω) = 1−
ω p
2

ω2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δij
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ω p
2 ≡

nq2

ε 0m



Application of response 
•  How does the electron response affect the propagation of waves? 

–  Consider: high frequency, long wave length waves in a plasma 
•  then response tensor from previous page is valid (more details later) 

•  Split currents into antenna current Jant and the current induced in 
the media Jmedia. Then Amperes and Faradays equations give: 
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k × k × E +
ω2

c 2
E + iµ0ωJmedia = −iµ0ωJant
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Note: total field E driven  
by both Jmedia and Jant 

•  Use the conductivity                   of the media: 

i.e. a wave equation with speed of light: 
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σ = iε 0
ω p
2

ω
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ω2
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c 2 E + iµ0ωσE =
ω2
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•  Introduction to the concept of a response 
•  First example: Response of electron gas  

–  Changing the speed of light 
–  Dispersion 

•  Polarization of atoms and molecules (brief) 
–  Response of crystals 

•  Medium of oscillators 
–  Detailed study of the resonance region 

•  Hermitian / antihermitian parts of the dielectric tensor 
•  Application of the Plemej formula 

•  Dielectric response for plasmas 
–  Magnetoionic theory (anisotropic/gyrotropic) 
–  Cold plasmas (Alfven velocity) 
–  Warm plasmas (Landau damping) 

Overview 
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Polarization of atoms and molecules 
•  The polarization of an atom (requires quantum mechanics) 

–  The electric field pushes the electrons, 
inducing a charge separation;  

–  Quantum mechanically: perturbs the  
eigenfunctions (orbitals): ψ(0)    ψ(0)+ψ (1)  

–  The field induced by the media is opposite  
to the total field 

•  The polarization of a water molecule 
–  Water molecules, dipole moment d 
–  The electric field induce a torque  

that turns it to reduce the total field 
–  Note: the electron eigen-states of the  

molecules are also perturbed, like in the atom  
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ψq
(1) = aqq'ψq '

(0)∑  →  Jmedia
(1) & ρmedia

(1)



Uniaxial crystals 
•  In solids the response, or electron mobility,  

is determined by the 
–  Metals: the valence electron give rapid response 
–  Insulators: electrons orbitals are bound to  

a single atom or molecule 
•  Uniaxial crystals: have an optical axis;  

e.g. the normal      to a sheeth structure 
•  Stronger bonds within then between the sheeths 

–  Graphite: valence electrons are shared only within a sheeth 
–  electron mobility (response) is different within and perpendicular to the sheeths 
–  The crystal is anisotropic 

•  Let the normal to the crystal be in the z-direction (as in figure) 

•  Example: slight birefrigence in optical fibres can cause modal dispersion 
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Biaxial crystals 

•  Uniaxial crystals has symmetric plane,  
in which the electron mobility is constant 

•  Biaxial crystals have no symmetry plane 
–  Instead they have different conductivity in  

all three directions 

–  When expressed in terms of the dielectric tensor one may introduce 
three refractive indexes of the media  
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Epsom Salt (MgSO4): 
nj = [ 1.433, 1.455, 1.461 ] 

Biaxial crystal called  
Borax, Na2(B4O5)(OH)4·8(H2O) 

These medias are rarely strongly unisotropic 
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Reminder: Equations for calculating the dielectric response 
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Current and charge drive the dielectric response 

€ 

∇ • Emedia = ρmedia /ε 0

€ 

∇ × Bmedia −
1
c 2
∂Emedia

∂t
= µ0Jmedia

E- & B-field exerts force on particles in media 

€ 

m˙ v = q(E + v × B)

The induced motion of charge particles form a current 
and a charge density 

 (n=particle density) 

€ 

Jmedia = qnv
species
∑

  

€ 

∂
∂t
ρmedia +∇  Jmedia = 0

The respons can be quantified in e.g. the conductivity σ	



€ 

Ji(k,ω) = σij (k,ω)E j (k,ω)

solve for v ! 



Medium of oscillators 
•  Consider a medium consisting of charged particles with 

–  charge q , mass m , density n 
•  Let the particles position x follow the equation of a forced oscillator 

–  i.e. the media has an eigenfrequency Ω and a damping rate Γ    
•  damping could be due to collisions (resistivity) and the eigenfrequency 

could be due to magnetization an acustic eigenfrequency of a crystal 

•  The current is then 

•  Thus the dielectric tensor reads 

–  again ωp is the plasma frequency 
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Medium of oscillators (2) 
•  Isotropic dielectric tensors Kij can be replaced by a scalar K, 

consider e.g. the inner product  
•  For the medium of harmonic oscillators 

•  In the high frequency limit where ω >> Ω  and ω >> Γ ,  then 

–  this is the response of the electron gas! 
•  At low frequency ω << Ω  and ω ∼ Γ ,  then 

–  here the medium is no longer dispersive (independent of ω) 
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ω p
2
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Medium of oscillators (3) 
•  The medium is the most dispersive when the frequency is near the 

characteristic frequency of the medium ω ∼ Ω  ,  
–  first rewrite the denominator 

–  assume here the damping rate to be small ω >> Γ  such that the last 
last term is negligible 

–  Next use the relation: 

–  The dielectric constant is then 
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Medium of oscillators (4) 
•  Next we shall use the condition that we are close to resonance; i.e. 

the frequency is near the characteristic frequency  ω ∼ Ω  : 

•  The dielectric constant then reads 
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1
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Hermitian: wave propagation 
     (reactive response) 

Antihermitian: wave absorption 
           (resistive response) 



Medium of oscillators (5) 
•  Antihermitian part comes from  iΓ/2  in  

–  which is most important if  
(for                           then KA << KH) 

–  Thus, the dissipation occur mainly  
where 

•  Summary: 
–  Low frequency: not dispersive 
–  Resonant region: strong damping in thin layer  
–  High frequency: response decay with frequency, 

like an electron gas. 
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ω	
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Γ > ω −Ω
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χ ~ K −1 ~ ω−2



Medium of oscillators (6) 
•  What happens in the limit when the damping Γ goes to zero? 
•  Again assume  ω ∼ Ω  then 

•  The limit where Γ goes to zero can be rewritten using the Plemej formula 

•  Thus when the damping goes to zero there is still an imaginary part that 
will cause wave damping! 
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What is a plasmas? 
•  Plasma ~ ionized gas 

–  a plasma is a collection of ions and electrons 
•  Charge neutrality: plasmas are highly conducting;  

–  in steady state charge density is zero 
•  Plasma models use: 

–  the mechanics of Newton/Einsteins and Maxwell’s equations 
(usually no quantum mechanics needed) 
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99% of all observable materia is in the plasma state 



Plasmas on earth… 



Industrial applications: 
Plasmas are used in producing the following… 



Dielectric response for plasmas 

•  A first example of a plasma model is the Magnetoionic theory: 
–  Assume: ions are static; unperturbed by the wave field (no response) 
–  Assume: electrons are cold; they are initially static, but move in the presence 

of the wave field 
–  Assume: the plasma has a static magnetic field;  

align the coordinate system: 

•  What is the dielectric respons of a magnetoionic media? 
–  align also y-axis such that: 
–  the respons of the electrons is then given by Newtons equation 

–  Next: add a friction with the ions (a force –mνf v) and use  
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Dielectric response for plasmas (2) 
•  Note that the magnetic field has two components a wave component and a 

static component 

–  Thus the Lorentz force is non-linear: 

•  Assuming that the wave amplitude is small, then we can neglect Bwave  

–  here we can identify the cyclotron frequency Ω=qB0/m    
•  Fourier transform: 
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Dielectric response for plasmas (3) 
•  Write equation as a matrix equations: 

•  Inverting the matrix 

•  The current is then 
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Dielectric response for plasmas (4) 
•  The dielectric tensor in the magnetoionic theory then reads: 

 or 

 where bk are the components of the unit vector parallel to the magnetic field 

•  This dielectric response tensor is: 
–  Anisotropic; response is different for E in the x, y, or z direciton. 
–  Gyrotropic: the off-diagonal terms (involving D) are perpendicular to a 

characteristic direction of the media  
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Hermitian part of the dielectric tensor 
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Antihermitian part of the dielectric tensor 
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Cold plasma dielectric response 
•  A commonly used representation of the plasma is the cold plasma  

–  Here ions and electrons are in a stationary equilibrium, and move only 
in the presence of a wave field 

–  Usually the friction between ions and electrons are neglected 
–  Each species is then described by the  

•  charge qν	



•  mass mν 

•  position rν  (or velocity vν ) 
–  where ν =i represent the ions and  ν =e represent the electrons 

•  NOTE: ν  is not a tensor index!  

•  The linearlised equation of motion for species ν  (B0=B0 ez ) : 

–  where Ων =qν B0 / mν 
–  this equation is solved like in the magnetoionic theory 
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Cold plasma dielectric response (2) 
•  The solution of the equation of motion for species ν  is 

•  With many species the current is a sum over the all species: 

–  thus also the conductivity  
is a sum over species: 
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Cold plasma dielectric response (3) 
•  The dielectric tensor for the cold plasma reads 

•  Low frequency limit ω << Ων , ωpν	



–  i.e. non-dispersive in S ! 
•  Low frequency tensor:  

–  compare: uniaxial crystal 
–  describes Alfven wave and  

plasma oscillations (see next lecture) 
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Cold plasma dielectric response (4) 

•  High frequency limit ω >> Ων , ωpν	
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Like an electron gas! 



Kinetic descriptions of gases and plasmas 
•  Gases and plasmas are made up of particles that 

move “randomly” 
–  This randomness makes them pratially 

impossible to predict exactly 
•  Instead: study them statistically : 

–  Select a velocity grid: 
   vi=i * δv   for  i=0,1,2… 
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f (v i) =
δN(v i)
δv

€ 

f (x,v) ≡ f (x,y,z,vx ,vy,vz ) =
δN(vx ,vy,vz )

δxδyδzδvxδvyδvz

Distribution function=“density in phase-space” 
–  i.e. combine real and velocity space 
–  consider a box: (x,x+δx), (y,y+δy), (z,z+δz) 

grid cells 

–  Construct histgram over particle velocity 
•  counter number of particle in each grid cell 

–  A density of particles in a velcity-space 



The Maxwellian distribution function 

•  The “most” important/common distribution function is called the 
Maxwellian distribution function . For a gas/plasma mass per particle 
m, temperature T and density n  

–  here V is the thermal velocity; T =m V 2 / 2 
•  E.g. when a gas or a plasma relaxed over a long time it will approach 

an equilibrium state. This state can be shown to be a Maxwellian! 
–  The Maxwellian maximizes the entropy 
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Response of a warm plasma 
•  In Maxwells equations we need to know the charge density and 

current deinsity.  
–  How can we calculate them from the distribution function? 

•  Note that the number density of particles  

•  How to calculate the density n and the average fluid velocity <v> : 

•  Thus, for an ensamble of species ν (e.g. ion and electron) 
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Response of a warm plasma 
•  When subject to a wave field, the equation of motion reads 

•  The distribution then evolves according to the Vlasov equation  
(continuity equation in real and velocity space) 

•  Note that the wave field perturbs both E, B and f, thus this equations 
is non-linear in the perturbation! 
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Response of a warm plasma (2) 
•  Separate unperturbed and perturbed quantities 

•  Use Faraday’s law to write:   

•  Linearlised equations 

•  Fourier transform 
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Resonance when particles travel  
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Landau-resonance 
•  The resonance in the solution to the linearised Vlasov equation is related 

to a damping 

–  This was first realised by Landau 
•  What is the physics of this resonance? 

–  Consider a plane wave 
–  Let a particle travel with the constant velocity 

–  Thus, the particles will see a field oscillating with the frequency ω’  
•   ω’ is the Doppler shifted velocity! 

–  The resonance condition                      ,  
•  i.e. the Doppler shifted frequency is zero 
•  i.e. when the travel with the same speed as the wave 
•  i.e. the E-field will accelerate the particle forever – the wave is damped! 

–  Note: we have linearised the equations, thus we assume that change in 
particle velocity is small no matter now long the acceleration time! 

•  in reality non-linear effects come in and then the damping remains only if the 
dissipation (Γ) is more important than non-linearity 
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Response of a warm plasma (3) 

•  The current is now obtained from the integral over velocity space 

•  After some algebra it is possible to rewrite the dielectric tensor as 
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Add a weak dissipation to  
allow for use of Plemej formula	





Damping in warm plasma 
•  Consider longitudinal waves 

–  the damping is then proportional to (see later lectures for details) 

•  This function has a maximum when yν ~0.7 , or ω/k ~ Vth , i.e. when the 
phase velocity of the wave is roughly equal to the thermal velocity 
–  this the when the Landau resonance is most effective 
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