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1 Probability Theory and Transforms

1.1 Exercise 1.2

X is a random variable chosen from X1 with probability a and from X2 with
probability b. Calculate E[X] and σX for α = 0.2 and b = 0.8. X1 is an expo-
nentially distributed r.v. with parameter λ1 = 0.1 and X2 is an exponentially
distributed r.v. with parameter λ2 = 0.02. Let the r.v. Y be chosen from
D1 with probability α and from D2 with probability b, where D1 and D2 are
deterministic r.v.s. Calculate the values D1 and D2 so that E[X] = E[Y ] and
σX = σY .
Solution: a) We directly apply the conditional expectation formula:

E[X] = αE[X1] + bE[X2].

We can do this since the expectation is a raw moment – not central. The proof
is straightforward: we have

fX(x) = αfX1
(x) + bfX2

(x)→

→ E[X] =
∫∞
0
xfX(x)dx = α

∫∞
0
xfX1

(x)dx+ b
∫∞
0
xfX2

(x)dx =

= αE[X1] + bE[X2].

We then replace the given data

E[X] = α
1

λ1
+ b

1

λ2
= 0.2

1

0.1
+ 0.8

1

0.02
= 42. (1)

We can not calculate the variance (or the standard deviation) in the same way,
since this is a central moment. Instead, we proceed with calculating the expected
square of the r.v. X, which is a raw moment:

E[X2] =
∫∞
0
x2fX(x)dx = α

∫∞
0
x2fX1(x)dx+ b

∫∞
0
x2fX2(x)dx =

= αE[X2
1 ] + bE[X2

2 ].

Replacing the data we get

E[X] = α
2

λ21
+ b

2

λ22
= 0.2

2

0.12
+ 0.8

2

0.022
= 4040. (2)

Finally, we use the relation between the expectation, square mean and variance

σ2
X = E[X2]− [E[X]]

2
= 4040− 422 → σX = 47.70. (3)

b) We have E[Y ] = αd1 + bd2 and E[Y 2] = αd21 + bd22. So the system of
equations becomes

0.2d1 + 0.8d2 = 42,

0.2d21 + 0.8d22 = 4040
(4)

Solving this 2 by 2 non-linear system we obtain the solution. Notice that because
of the second order of the equation we may in general have more than one
solutions.
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1.2 Exercise 1.3

X is a discrete stochastic variable, pk = P (X = k) = ak

k! e
−a, k = 0, 1, 2, ... and

a is a positive constant.
a) Prove that

∑∞
k=0 pk = 1.

b) Determine the z-transform (generating function) P (z) =
∑∞
k=0 z

kpk.

c) Calculate E[X],Var[X] and E[X(X − 1)...(X − r + 1)], r = 1, 2, ... with
and without using z-transforms.
Solution a) We have

∞∑
k=0

pk =

∞∑
k=0

ak

k!
e−a = e−a

∞∑
k=0

ak

k!
= e−aea = 1.

Notice this useful and well-known infinite series summation.
b) We replace the definition of the mass function and gradually have:

P (z) =

∞∑
k=0

zk
ak

k!
e−a = e−a

∞∑
k=0

zk
ak

k!
= e−a

∞∑
k=0

(za)k

k!
= e−aeaz = e−a(1−z).

c) First, we try without the z-transform, i.e. using the definitions in the
probability domain. We start from the third sentence, using the definition of
expectation:

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (5)

E[X(X − 1)...(X − r + 1)] =
∑∞
k=0 k(k − 1)...(k − r + 1)pk =

=
∑∞
k=0 k(k − 1)...(k − r + 1)a

k

k! e
−a =

∑∞
k=0

ak

(k−r)!e
−a =

= e−aar
∑∞
k=0

a(k−r)

(k−r)! = are−aea = ar.

Then clearly, we have (by setting r = 1) E[X] = a1 = a. And, finally,

Var[X] = E[X2]−[E[X]]
2

= E[X2]−a2 = E[X(X−1)]+E[X]−a2 = a2+a−a2.

We try, now, with the z-transform. We differentiate r times the definition of
the z-transform:

dr

dzr
P (z) =

dr

dzr

∞∑
k=0

zkpk =

∞∑
k=0

k(k − 1)...(k − r + 1)zk−rpk

If we replace z = 1 we get

dr

dzr
P (z)

}
z=1

= E[X(X − 1)...(X − r + 1)].

We, then, calculate,

dr

dzr
P (z)

}
z=1

= are−a(1−1) = ar.
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1.3 Exercise 1.4

Xi’s are independent Poisson distributed random variables, thus, pk =
aki
k! e
−ai ,

k = 0, 1, 2, ..., and each ai, i = 1, 2, ..., n is a positive constant. Give the proba-
bility distribution function of X =

∑n
i=1.

Solution: This problem indicates the usefulness of the z-transform in the
calculation of the distribution of the sum of variables. We have proven that
the ZT of the sum of independent random variables is the product of
their individual z-transforms. Thus,

P (z) =

n∏
i=1

Pi(z) =

n∏
i=1

e−ai(1−z) = e
∑n

i=1−ai(1−z) = e−α(1−z),

where α =
∑n
i=1−ai. This proves that the distribution is also Poisson with

parameter α, i.e. the sum of parameters. The proof is based on the uniqueness
of z-transform1. As a result, the distribution function will be

pX(k) =
αk

k!
e−α

1.4 Exercise 1.5

X is a positive stochastic continuous variable with probability distribution func-
tion (PDF)

F (x) = P (X ≤ x) =

{
0, x < 0,
1− e−ax, x ≥ 0.

a) Give the probability density function f(x) = dF (x)/dx.
b) Give F (x) = P (X > x).
c) Calculate the Laplace Transform f∗(s) = E[e−sX ] =

∫∞
0
e−sxf(x)dx.

d) Calculate the expected values m = E[X], E[Xk], k = 0, 1, 2, ..., the vari-
ance σ2

X , the standard deviation σX and the coefficient of variation c = σ/m,
with and without the transform F ∗(s).

Solution: a) For the calculation of f(x) we just need to differentiate:

f(x) = dF (x)/dx = d(1− e−ax)/dx = ae−ax.

b) The complementary PDF is simply given as

FX(x) = P (X > x) = 1− P (X ≤ x) = 1− FX(x) = e−ax.

c) Calculation of the Laplace Transform with simple integration

f∗(s) =

∞∫
0

e−sxf(x)dx =

∞∫
0

e−sxae−axdx = a

∞∫
0

e−x(s+a)dx =
a

s+ a
.

d) We proceed first, without the help of Laplace transforms, using the defi-
nition of the expectation

E[X0] =
∫∞
0
x0f(x)dx =

∫∞
0
f(x)dx = 1.

1or the 1-1 correspondence between the mass function and the ZT
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E[Xk] =
∫∞
0
xkf(x)dx =

∫∞
0
xkae−axdx = a−1a

∫∞
0
xk(e−ax)′dx =

= k
∫∞
0
xk−1e−axdx = k

a

∫∞
0
xk−1ae−axdx =

∫∞
0
xk−1f(x)dx =

= k
aE[Xk−1].

This is a recursive formula that enables the calculation of any moment. We
have:

E[Xk] =
k

a
E[Xk−1] =

k

a

k − 1

a
E[Xk−2] =

k

a

k − 1

a
..

1

a
E[X0] =

k

a

k − 1

a
..

1

a
=
k!

ak

which gives, simply, E[X] = 1/a, for k = 1. The variance is calculated through
the usual formula, and the raw moments are taken from above:

σ2 = E[X2]− [E[X]]2 =
2

a2
−
(

1

a

)2

= 1/a2.

so the standard deviation is simply the square root of the variance, 1/a, and
the coefficient of variation is 1. Notice that this is special for the exponential
distribution.

We try, now, with the help of the Laplace transforms.

E[Xk] = (−1)k dk

dsk
f∗(s) = (−1)k dk

dsk
a
s+a = (−1)kak!

(s+a)k+1 .

We find this formula by differentiating k times the Laplace transform and re-
placing s = 0. The rest follows with simple replacement k = 1, 2, ...

1.5 Exercise 1.6

Xi’s are independent, exponentially distributed random variables with a mean
value of 1/a, a > 0, i = 1, 2, ..., n. Calculate P (X ≤ x) and P (X ≥ x) where

a) X = min(X1, X2, ..., Xn),
b) X = max(X1, X2, ..., Xn).
Solution: a) The key point in this exercise is the fact that the random

variables are independent (mutually independent). We gradually have:

P (X ≤ x) = P (min(X1, X2, ..., Xn) ≤ x) = 1− P (min(X1, X2, ..., Xn) > x)

= 1− P (X1 > x,X2 > x, ...,Xn > x) = 1−
∏n
i=1 P (Xi > x)

= 1−
∏n
i=1 e

−ax = 1− e−
∑n

i=1 ax = 1− e−nax

This shows that the minimum of exponentially distributed random variables is
also an exponential variable and its rate is the sum of the individual rates.

b) Similar calculations:

P (X ≤ x) = P (max(X1, X2, ..., Xn) ≤ x) = P (X1 ≤ x,X2 ≤ x, ...,Xn ≤ x)

=
∏n
i=1 P (Xi ≤ x) =

∏n
i=1(1− e−ax) = (1− e−ax)n.

Cleary, the variable X is, now, not exponential.
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2 Balance equations, birth-death processes, con-
tinuous Markov Chains

2.1 Exercise 3.2

Consider a birth-death process with 3 states, where the transition rate from state
2 to state 1 is q21 = µ and q23 = λ. Show that the mean time spent in state 2
is exponentially distributed with mean 1/(λ+ µ).2

Solution: Suppose that the system has just arrived at state 2. The time until
next ”birth“ – denoted here as TB – is exponentially distributed with cumu-
lative distribution function FTB

(t) = 1 − e−λt. Similarly, the time until next
”death“ – denoted here as TD – is exponentially distributed with cumulative
distribution function FTD

(t) = 1− e−µt. The random variables TB and TD are
independent.

Denote by T2 the time the system spends in state 2. The system will depart
from state 2 when the first of the two events (birth or death) occurs. Conse-
quently we have T2 = min{TB , TD}. We, then, apply the result from exercise
1.6, that is the minimum of independent exponential random variables is an
exponential random variable. We can actually show this:

FT2(t) = Pr{T2 ≤ t} =
= Pr{min{TB , TD} ≤ t} =
= 1− Pr{min{TB , TD} > t} =
= 1− Pr{TB > t, TD > t} =
= 1− Pr{TB > t} · Pr{TD > t} =
= 1− e−λt · e−µt =
= 1− e−(λ+µ)t

so T2 is exponentially distributed with parameter λ+ µ.
Notice that we can generalize to the case with more than two transition

branches. This exercise reveals the property of continuous time Markov chains,
that is, the time spent on a state is exponentially distributed.

2.2 Exercise 3.3

Assume that the number of call arrivals between two locations has Poisson distri-
bution with intensity λ. Also, assume that the holding times of the conversations
are exponentially distributed with a mean of 1/µ. Calculate the average number
of call arrivals for a period of a conversation.

Solution: Denote by NC the number of arriving calls during the period of one
conversation. Denote by T the duration of this conversation. Given that T = t,
NC |T = t is Poisson distributed with parameter λ · t so the probability mass
function of the number of calls will be

Pr{arriving calls within t = k} = Pk(t) =
(λt)k

k!
e−λt.

2This exercise is similar to Exercise 6 from Chapter 1: ”The minimum of independent
exponential variables is exponential.”
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with an average number of calls: E[NC |T = t] = λt.
Moreover T is exponentially distributed, with parameter µ so the density

function will be:
fT (t) = µe−µt.

We apply the conditional expectation formula:

E[NC ] =

∞∫
0

E[NC |T = t] · fT (t)dt =

∞∫
0

λtµe−µtdt = λ

∞∫
0

tµe−µtdt =
λ

µ
.

2.3 Exercise 3.4

Consider a communication link with a constant rate of 4.8kbit/sec. Over the
link we transmit two types of messages, both of exponentially distributed size.
Messages arrive in a Poisson fashion with λ = 10 messages/second. With prob-
ability 0.5 (independent from previous arrivals) the arriving message is of type
1 and has a mean length of 300 bits. Otherwise a message of type 2 arrives with
a mean length of 150 bits. The buffer at the link can at most hold one message
of type 1 or two messages of type 2. A message being transmitted still takes a
place in the buffer.

a) Determine the mean and the coefficient of variation of the service time of
a randomly chosen arriving message.

b) Determine the average times in the system for accepted messages of type
1 and 2.

c) Determine the message loss probabilities for messages of type 1 and 2.

Solution:
a) We have a link with a constant transmission rate. So the service time

distributions follow the packet length distributions. Consequently, the service
times of both packet types are exponential with mean values of

• Type 1: E[T1] = 300
4800 = 1

16 sec,

• Type 2: E[T2] = 150
4800 = 1

32 sec.

As a result the parameters of the exponential distributions are µ1 = 16 and
µ2 = 32, respectively. A random arriving packet is of Type 1 or Type 2 with
probability 0.5. We apply the conditional expectation 3:

E[T ] =
1

2
E[T1] +

1

2
E[T2] =

3

64

Similarly, we calculate the mean square:

E[T 2] =
1

2
E[T 2

1 ] +
1

2
E[T 2

2 ] =
1

2

2

µ2
1

+
1

2

2

µ2
2

= 16−2 + 32−2 =
5

4
· 16−2.

The variance of T is derived from V ar[T ] = E[T 2]− (E[T ])2. Then we compute
the standard deviation σT as σT =

√
V ar[T ], and finally the coefficient of

variation is given as: cT = σT

E[T ] .

3This is similar to exercise 1.2
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S0S11 S12 S22

λ/2

λ/2µ1 λ/2

µ2 µ2

λ/2

λ/2

Figure 1: State Diagram for Exercise 3.4

b) For this part of the exercise, we need to draw the Markov Chain (Fig. 2)
and solve it in the steady state. The state space must be defined in such a
way that we can guarantee that all transitions – from state to state – have an
exponential rate. We choose here to define such a Markov chain with 4 states:
State 0; Empty buffer.
State 11; 1 packet of Type 1.
State 21; 1 packet of Type 2.
State 22; 2 packets of Type 2.
Then we solve the balance equations in the local form:

µ2P22 = λ/2P21

µ2P21 = λ/2P0

µ1P11 = λ/2P0

P0 + P11 + P21 + P22 = 1(norm. equation)

Solution:
P0 = 0.670, P21 = 0.105, P22 = 0.016, P11 = 0.209.

An accepted message of Type 1 can only arrive at state 0, otherwise it is rejected.
So its the average service time will be E[T1].
An accepted message of Type 2 can arrive at states 0 and 21, otherwise it is
rejected. Then, the average service time will be (E[T2]P0 + 2E[T2]P(21)/(P0 +
P21). 4

c) The loss probabilities are equal to the probabilities of the system being in
BLOCKING states, for each of the two packet types. We underline that this is
always true for homogeneous Markov chains, that is, Markov chains where the
arrival rates do not depend on the system state.

2.4 Exercise 3.5

Consider a Markovian system with discouraged job arrivals. Jobs arrive to a
server in a Poisson fashion, with an intensity of one job per 7 seconds. The
jobs observe the queue. They do NOT join the queue with probability lk if they
observe k jobs in the queue. lk = k/4 if k < 4, or 0, otherwise. The service
time is exponentially distributed with mean time of 6 seconds.

a) Determine the mean number of customers in the system, and
b) the number of jobs served in 100 seconds.

Solution:
4The occurrence of acceptance reduces the sample space to two states only. Then the

probabilities are normalized.
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S0 S1 S2 S3 S4 S5

λ λ 3λ/4 2λ/4 λ/4 0

µ µ µ µ µ

Figure 2: State diagram for Exercise 3.5

a) This is a simple model but requires careful design. After building the
correct state diagram, the solution is found, based on the LOCAL balance equa-
tions.

We have a system with 6 states. State space: Sk : k jobs in the system. The
system diagram is shown in Fig. 3).

Balance Equation System:

λP0 = µP1

λP1 = µP2

3λ/4P2 = µP3

λ/2P2 = µP4

λ/4P2 = µP5∑5
k=1 Pk = 1

Solution: P0 ≈ 0.3, and the remaining probabilities are computed based on
P0 and the equations above. After determining the state probabilities, we derive
the average number of customers in the system through

E[N ] =

5∑
k=0

k · Pk

We find E[N ] ≈ 1.43.
b) We have, here, a system with different arrival rates in each state. These

systems are defined as non-homogeneous. However, the service rate is constant.
The server is busy with probability (1−P0). When it is busy, it serves jobs. The
service rate is µ = 1/6sec−1. As a result, the server can serve 100 · µ · (1− P0)
jobs in 100 seconds on AVERAGE!

2.5 Exercise 3.6

Consider a network node that can serve 1 and store 2 packets altogether. Packets
arrive to the node according to a Poisson process. Serving a packet involves two
independent sequentially performed tasks: the ERROR CHECK and the packet
TRANSMISSION to the output link. Each task requires an exponentially dis-
tributed time with an average of 30msec. Give, that we observe that the node is
empty in 60% of the time, what is the average time spend in the node for one
packet?

Solution: As always, we need to construct the state diagram is such a way
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S0 S10 S20

S11 S21

λ λ

λ

λ

λ
µ µ µ µ

Figure 3: State Diagram for Exercise 3.6

that all transitions rates are guaranteed to be exponential. The selected state
space:

S0: Empty network node,
S11: One packet under transmission,
S10: One packet under error-check,
S20: One packet under error-check and one buffered,
S21: One packet under transmission and one buffered,

The state diagram is shown in Fig. 4. We can form the global balance equations
parameterized by λ. Then we apply information that is given: P0 = 0.6; This
extra information enables the solution of the system of equations, and leads to
the calculation of λ:

λP0 = µP11

(λ+ µ)P11 = µP10

(λ+ µ)P10 = λP0 + µP21

µP21 = λP11 + µP22

P11 + P10 + P21 + P22 = 1− P0 = 0.4

Solution: P10 ≈ 0.1636, P11 ≈ 0.1337, P20 ≈ 0.0365, P21 ≈ 0.0663, λ ≈ 7.63.
For the calculation of the total average system time for a packet, we apply
Little’s formula.

N = λeff · E[Tsys]→ E[Tsys] =
N

λeff
=

1 · (P10 + P11) + 2 · (P21 + P22)

λeff
.

We always apply the effective arrival rate at Little’s formula, because the formula
needs the actual average arrival rate at the system, excluding possible drops.
Here, the effective rate is not equal to λ, since we have packet drops. However,
since the arrival rate for this system does not change with time, the effective
arrival rate is simply:

λeff = λ · (P0 + P10 + P11).
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