EP2200 Queuing theory and teletraffic systems

3rd lectureMarkov chainsBirth-death process- Poisson process

Viktoria Fodor KTH EES

Outline for today

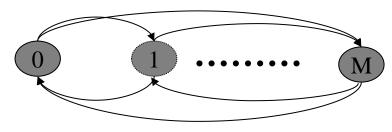
- Markov processes
 - Continuous-time Markov-chains
 - Graph and matrix representation
- Transient and steady state solutions
- Balance equations local and global
- Pure Birth process Poisson process as special case
- Birth-death process as special case

Markov processes

- Stochastic process
 - $p_i(t) = P(X(t) = i)$
- The process is a Markov process if the future of the process depends on the current state only - Markov property
 - $P(X(t_{n+1})=j \mid X(t_n)=i, X(t_{n-1})=l, ..., X(t_0)=m) = P(X(t_{n+1})=j \mid X(t_n)=i)$
 - Homogeneous Markov process: the probability of state change is unchanged by time shift, depends only on the time interval

$$P(X(t_{n+1})=j \mid X(t_n)=i) = p_{ij}(t_{n+1}-t_n)$$

- Markov chain: if the state space is discrete
 - A homogeneous Markov chain can be represented by a graph:
 - States: nodes
 - State changes: edges



Continuous-time Markov chains (homogeneous case)

Continuous time, discrete space stochastic process, with Markov property, that is:

$$P(X(t_{n+1}) = j \mid X(t_n) = i, X(t_{n-1}) = l, ... X(t_0) = m) = P(X(t_{n+1}) = j \mid X(t_n) = i), \quad t_0 < t_1 < ... < t_n < t_{n+1}$$

- State transition can happen in any point of time
- Example:
 - number of packets waiting at the output buffer of a router
 - number of customers waiting in a bank
- The time spent in a state has to be exponential to ensure Markov property:
 - the probability of moving from state i to state j sometime between t_n and t_{n+1} does not depend on the time the process already spent in state i before t_n .

 t_0 t_1 t_2 t_3

 t_{4} t_{5}

Continuous-time Markov chains (homogeneous case)

- State change probability depends on the time interval: $P(X(t_{n+1})=j \mid X(t_n)=i) = p_{ij}(t_{n+1}-t_n)$
- Characterize the Markov chain with the state transition rates instead:

Characterize the Markov chain with the state transition rate
$$q_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j | X(t) = i)}{\Delta t}$$
, $i \neq j$ rate (intensity) of state change $q_{ii} = -\sum_{j \neq i} q_{ij}$ - defined to easy calculation later on

Transition rate matrix **Q**:

$$\mathbf{Q} = \begin{bmatrix} q_{00} & q_{01} & \cdots & q_{0M} \\ \vdots & \ddots & & & \\ & & q_{(M-1)M} \\ q_{M0} & \cdots & q_{M(M-1)} & q_{MM} \end{bmatrix} \qquad \mathbf{Q} = \begin{bmatrix} q_{01} = 4 & & \\ & & &$$

Outline for today

- Markov processes
 - Continuous-time Markov-chains
 - Graph and matrix representation
- Transient and steady state solutions
- Balance equations local and global
- Pure Birth process Poisson process as special case
- Birth-death process as special case

Transient solution

- The transient time dependent state probability distribution
- $\underline{p}(t) = \{p_0(t), p_1(t), p_2(t), \ldots\}$ probability of being in state i at time t, given $\underline{p}(0)$.

$$q_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j \mid X(t) = i)}{\Delta t} \implies P(X(t + \Delta t) = j \mid X(t) = i) = q_{ij} \Delta t + o(\Delta t)$$

$$p_{i}(t + \Delta t) = p_{i}(t) - p_{i}(t) \sum_{j \neq i} q_{ij} \Delta t + \sum_{j \neq i} p_{j}(t) q_{ji} \Delta t + o(\Delta t), \quad \lim_{\Delta t \to 0} \frac{o(\Delta t)}{\Delta t} = 0$$

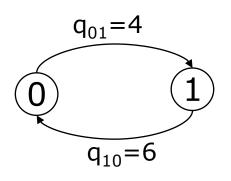
leaves the state arrives to the state

$$p_{i}(t + \Delta t) - p_{i}(t) = p_{i}(t)q_{ii}\Delta t + \sum_{j \neq i} p_{j}(t)q_{ji}\Delta t + o(\Delta t) = \sum_{j} p_{j}(t)q_{ji}\Delta t + o(\Delta t) \quad (-\sum_{j \neq i} q_{ij} = q_{ii})$$

$$\frac{p_i(t+\Delta t)-p_i(t)}{\Delta t} = \sum_j p_j(t)q_{ji} + \frac{O(\Delta t)}{\Delta t} \quad \Rightarrow \quad \frac{dp_i(t)}{dt} = \sum_j p_j(t)q_{ji}$$

$$\frac{dp(t)}{dt} = p(t)\mathbf{Q}, \quad p(t) = p(0) \cdot e^{\mathbf{Q}t}$$
 Transient solution

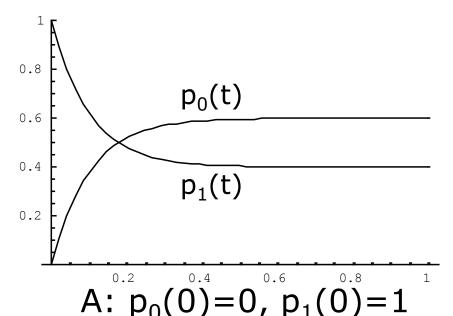
Example – transient solution

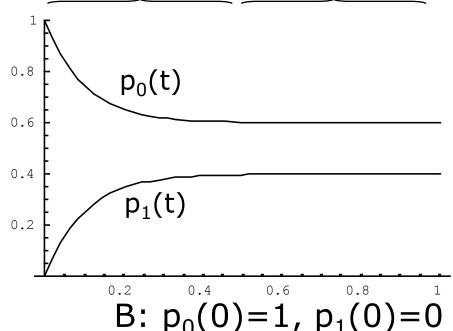


$$\mathbf{Q} = \begin{bmatrix} -4 & 4 \\ 6 & -6 \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} -4 & 4 \\ 6 & -6 \end{bmatrix} \qquad \mathbf{p}(t)\mathbf{Q} = \frac{d\mathbf{p}(t)}{dt}$$
$$\mathbf{p}(t) = \mathbf{p}(0) \cdot e^{\mathbf{Q}t}$$

Transient Stationary / steady state state





Transient solution - comment

- Matrix exponential
- Matrix exponentials are defined as:

$$e^{\mathbf{X}} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{X}^k$$

And are difficult to calculate.

 Therefore, for the small case on the 2-state MC I solved the original set of differential equations instead:

$$\frac{dp(t)}{dt} = p(t)\mathbf{Q}$$

$$p_0'(t) = p_0(t)q_{00} + p_1(t)q_{10}$$

$$p_1'(t) = p_0(t)q_{01} + p_1(t)q_{11}$$

$$p_0(t) + p_1(t) = 1$$

- To solve linear differential equations is still tough. See relevant course books
- Fortunately, math programs can do it for you (I used Mathematica)

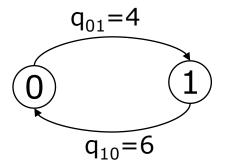
Stationary solution (steady state)

- Def: stationary state probability distribution (stationary solution)
 - $p = \lim p(t)$ exists
 - \underline{p} is independent from $\underline{p}(0)$
- The stationary solution <u>p</u> has to satisfy:

$$p(t)\mathbf{Q} = \frac{dp(t)}{dt} = 0, \quad \sum p_i(t) = 1$$

Note: the rank of Q_{MM} is M-1!

$$\mathbf{Q} = \begin{bmatrix} q_{00} & q_{01} & \cdots & q_{0M} \\ \vdots & \ddots & & & & \\ & & q_{(M-1)M} \\ q_{M0} & \cdots & q_{M(M-1)} & q_{MM} \end{bmatrix}$$



$$\begin{bmatrix} p_0, p_1 \end{bmatrix} \begin{bmatrix} -4 & 4 \\ 6 & -6 \end{bmatrix} = \begin{bmatrix} 0, 0 \end{bmatrix}, \quad p_0 + p_1 = 1$$

$$\frac{p_0 = 0.6, \quad p_1 = 0.4}{p_0 = 0.6, \quad p_1 = 0.4}$$

Stationary solution (steady state)

Important theorems – without the proof

- Stationary solution exists, if
 - The Markov chain is irreducible (there is a path between any two states) and
 - $p\mathbf{Q} = 0$, $p \times \mathbf{1} = 1$ has positive solution
- Equivalently, stationary solution exists, if
 - The Markov chain is irreducible
 - For all states: the mean time to return to the state is finite
- Finite state, irreducible Markov chains always have stationary solution.
- Markov chains with stationary solution are also ergodic:
 - p_i gives the portion of time a single realization spends in state i, and
 - the probability that one out of many realizations are in state i at arbitrary point of time

Outline for today

- Markov processes
 - Continuous-time Markov-chains
 - Graph and matrix representation
- Transient and steady state solutions
- Balance equations local and global
- Pure Birth process Poisson process as special case
- Birth-death process as special case

Balance equations

• How can we find the stationary solution? $\underline{p}\mathbf{Q} = \underline{0}$

$$0 = p\mathbf{Q} \implies$$

State 1:

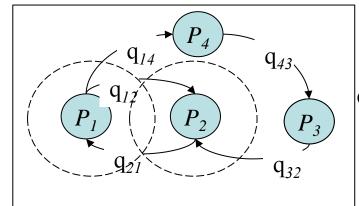
$$0 = -(q_{12} + q_{14})p_1 + q_{21}p_2$$

$$q_{21}p_2 = (q_{12} + q_{14})p_1$$

State 2:

$$0 = q_{12}p_1 - q_{21}p_2 + q_{32}p_3$$

$$\underbrace{q_{12}p_{1} + q_{32}p_{3}}_{\text{flow in}} = \underbrace{q_{21}p_{2}}_{\text{flow out}}$$



$$\mathbf{Q} = \begin{bmatrix} -(q_{12} + q_{14}) & q_{12} & 0 & q_{14} \\ q_{21} & -q_{21} & 0 & 0 \\ 0 & q_{32} & -q_{32} & 0 \\ 0 & 0 & q_{43} & -q_{43} \end{bmatrix}$$

- Global balance conditions
 - In equilibrium (for the stationary solution)
 - the transition rate out of a state or a group of states must equal the transition rate into the state (or states)
 - flow in = flow out
 - defines a global balance equation

Group work

Global balance equation for state 1 and 2:

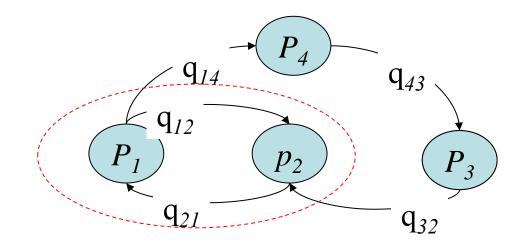
$$0 = p\mathbf{Q} \implies$$
State 1:

$$0 = -(q_{12} + q_{14})p_1 + q_{21}p_2$$

$$q_{21}p_2 = (q_{12} + q_{14})p_1$$
State 2:

$$0 = q_{12}p_1 - q_{21}p_2 + q_{32}p_3$$

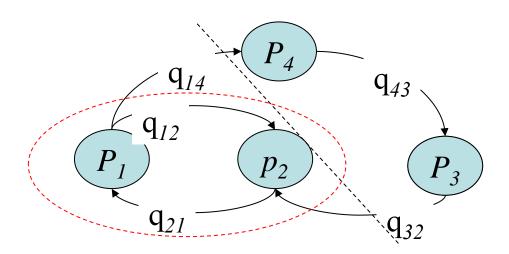
$$q_{12}p_1 + q_{32}p_3 = q_{21}p_2$$



 Is there a global balance equation for the circle around states 1 and 2?

Balance equations

- Local balance conditions in equilibrium
 - the local balance means that the total flow from one part of the chain must be equal to the flow back from the other part
 - for all possible cuts
 - defines a local balance equation
- The local balance equation is the same as a global balance equation around a set of states!



Balance equations

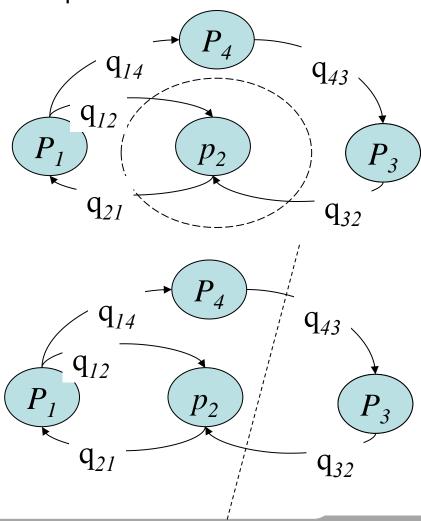
Set of linear equations instead of a matrix equation

$$\begin{array}{l} \mathbf{0} = pQ \quad \Rightarrow \\ 0 = q_{12}p_1 - q_{21}p_2 + q_{32}p_3 \\ \underline{q_{12}p_1 + q_{32}p_3} = \underline{q_{21}p_2} \\ \text{flow in} \qquad \text{flow out} \end{array}$$

- Global balance :
 - flow in = flow out around a state
 - or around many states
- Local balance equation:
 - flow in = flow out across a cut

$$q_{43}p_4 = q_{32}p_3$$

- M states
 - M-1 independent equations
 - $-\Sigma p_i = 1$

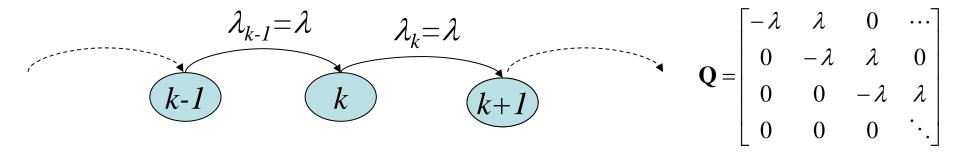


Outline for today

- Markov processes
 - Continuous-time Markov-chains
 - Graph and matrix representation
- Transient and steady state solutions
- Balance equations local and global
- Pure Birth process Poisson process as special case
- Birth-death process as special case

Pure birth process

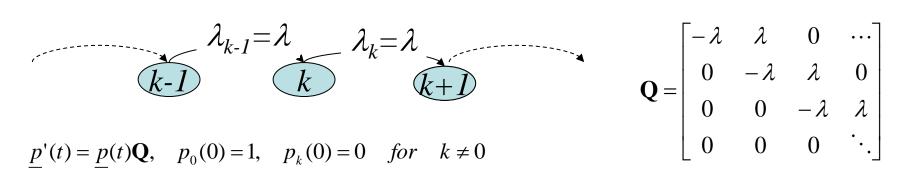
- Continuous time Markov-chain, infinite state space
- Transitions occur only between neighboring states
 - State independent birth intensity: $\lambda_i = \lambda$, $\forall i$



- No stationary solution
- Transient solution:
 - $p_k(t) = P(system in state k at time t)$
 - number of events (births) in an interval t

Pure birth process

Transient solution – number of events (births) in an interval (0,t]

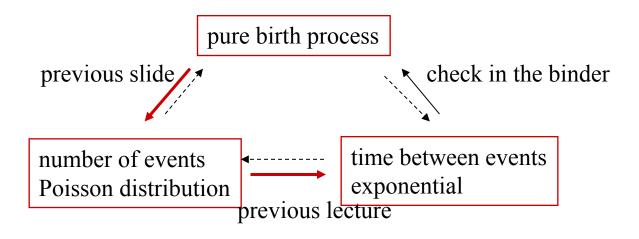


$$\begin{aligned} p'_{0}(t) &= -\lambda p_{0}(t) & \longrightarrow p_{0}(t) = e^{-\lambda t} \\ p'_{1}(t) &= \lambda p_{0}(t) - \lambda p_{1}(t) & \longrightarrow p'_{1}(t) = \lambda e^{-\lambda t} - \lambda p_{1}(t) & \longrightarrow p_{1}(t) = \lambda t e^{-\lambda t} \\ \vdots & & \\ p'_{k}(t) &= \lambda p_{k-1}(t) - \lambda p_{k}(t) & \Longrightarrow p_{k}(t) = \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \end{aligned}$$

 Pure birth process gives Poisson process! – time between state transitions is Exp(λ)

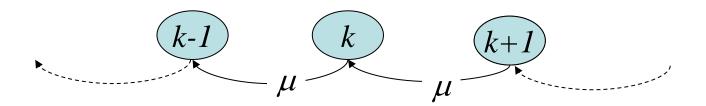
Equivalent definitions of Poisson process

- 1. Pure birth process with intensity λ
- 2. The number of events in period (0,t] has Poisson distribution with parameter λ
- 3. The time between events is exponentially distributed with parameter λ $P(X < t) = 1 e^{-\lambda t}$



Pure death process

- Continuous time Markov-chain, infinite state space
- Transitions occur only between neighboring states
 - State independent death intensity: $\mu_i = \mu$, $\forall i \neq 0$



- No stationary solution
- Pure death process gives Poisson process until reaching state 0
- Time between state transitions is Exp(µ)

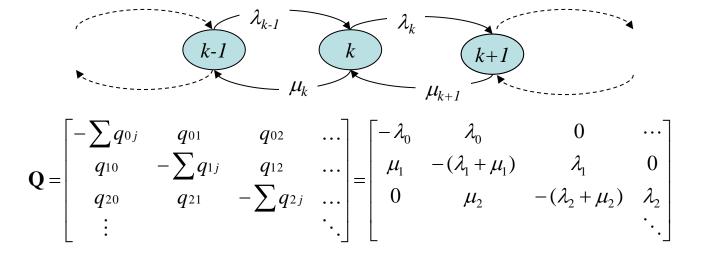
Outline for today

- Markov processes
 - Continuous-time Markov-chains
 - Graph and matrix representation
- Transient and steady state solutions
- Balance equations local and global
- Pure Birth process Poisson process as special case
- Birth-death process as special case

Birth-death process

- Continuous time Markov-chain
- Transitions occur only between neighboring states

$$i{\to}i{+}1$$
 birth with intensity λ_i
$$i{\to}i{-}1 \text{ death with intensity } \mu_i \quad \text{(for } i{>}0\text{)}$$
 modells population



- State holding time length of time spent in a state k
 - Until transition to states k-1 or k+1
 - Minimum of the times to the first birth or first deaths \rightarrow minimum of two Exponentially distributed random variables: $\text{Exp}(\lambda_k + \mu_k)$

B-D process - stationary solution

- Local balance equations, like for general Markov-chains
- Stability: positive solution for <u>p</u> (since the MC is irreducible)

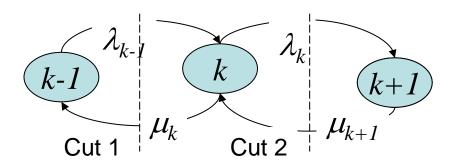
Cut 1:
$$\lambda_{k-1} p_{k-1} = \mu_k p_k \implies p_k = \frac{\lambda_{k-1}}{\mu_k} p_{k-1}$$

Cut 2:
$$\lambda_k p_k = \mu_{k+1} p_{k+1} \implies p_{k+1} = \frac{\lambda_k}{\mu_{k+1}} p_k = \frac{\lambda_k \lambda_{k-1}}{\mu_{k+1} \mu_k} p_{k-1}$$

:

$$\Rightarrow p_k = \frac{\lambda_0 \cdots \lambda_{k-1}}{\mu_1 \cdots \mu_k} p_0 = \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}} p_0,$$

$$p_0 = \frac{1}{1 + \sum_{i=0}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i-1}}},$$

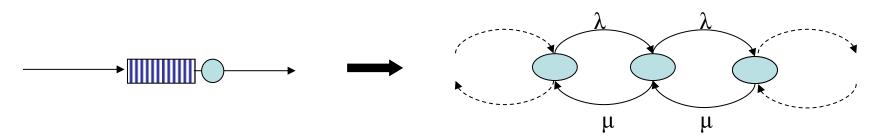


Group work: stationary solution for state independent transition rates:

$$\lambda_i = \lambda, \, \mu_i = \mu.$$

Markov-chains and queuing systems

- Why do we like Poisson and B-D processes?
 How are they related to queuing systems?
 - If arrivals in a queuing system can be modeled as Poisson process → also as a pure birth process
 - If services in a queuing systems can be modeled with exponential service times → also as a (pure) death process
 - Then the queuing system can be modeled as a birth-death process



Summary – Continuous time Markov-chains

- Markovian property: next state depends on the present state only
- State lifetime: exponential
- State transition intensity matrix Q
- Stationary solution: $\underline{p}Q = \underline{0}$, or balance equations
- Poisson process
 - pure birth process (λ)
 - number of events has Poisson distribution, $E[X] = \lambda t$
 - interarrival times are exponential $E(\tau)=1/\lambda$
- Birth-death process: transition between neighboring states
- B-D process may model queuing systems!

Summary

- Continuous-time Markov chains
- Balance equations (global, local)
- Pure birth process and Poisson process
- Birth-death process