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Fourier transforms, Generalised functions 
and Greens functions 
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Motivation 

–  A big part of this course concerns waves, oscillators, damping/growth 
•  Plane waves: 

•  Example for a growing/damped wave: 

•  NOTE: growing and damped waves become infinity when  

€ 

f (x,t) = ˆ f exp ik⋅ x − iωt[ ]

€ 

f (x,t) = ˆ f exp ik⋅ x − iωt ± γt[ ]

€ 

t →±∞

–  Fourier transforms may be used to describing plane waves 
•  But it require special care (explained later)! 

–  In this lecture we will… 
•  Study Fourier and Laplace transforms for waves and oscillators 

–  For damped and growing waves Fourier transforms may not exist! 
•  Instead Laplace transforms can sometimes be used 
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Outline 

–  Fourier transforms 
•  Fourier’s integral theorem 
•  Truncations and generalised functions 
•  Plemej formula 

–  Laplace transforms and complex frequencies 
•  Theorem of residues 
•  Causal functions 
•  Relations between Laplace and Fourier transforms 

–  Greens functions 
•  Poisson equation 
•  d’ Alemberts equation 
•  Wave equations in temporal gauge 

–  Self-study: linear algebra and tensors 
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What functions can be Fourier transformed? 
•  The Fourier integral theorem: 

–  f(t) is sectionally continuous over 

–  f(t) is defined as    

–  f(t) is amplitude integrable, that is,  

   
Then the following identity holds: 

€ 

f (t) =1
f (t) = cos(t)

f (t) =
0 ,  t < 0
1 ,  t ≥ 0
⎧ 
⎨ 
⎩ 

f (t) =
0        ,  t is a rational number

exp(−t 2) ,  t is an irrational number
⎧ 
⎨ 
⎩ 

•  For which of the following functions does the above theorem hold? 
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What functions can be Fourier transformed? 

 Many commonly used functions are not amplitude integrable, e.g. 
f(t)=cos(t), f(t)=exp(it) and f(t)=1. 

Solution: Use approximations of cos(t) that converge asymptotically 
to cos(t) – details comes later on 

•  The asymptotic limits of functions like cos(t) will be used to define 
generalised functions, e.g. Dirac δ-function. 
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Dirac δ-function 
•  Dirac’s generalised function can be defined as: 

Alternative definitions, as limits of well behaving functions, are shown shortly 

•  Important example: 

Proof: Whenever |f(t)|>0 the contribution is zero. For each t = ti where 
f(ti)=0, perform the integral over a small region ti – ε < t < ti + ε (where ε  
is small such f(t) ≈ (t - ti) f’(ti) ). Next, use variable substitution to perform 
the integration in x = f(t), then dt = dx / f’(ti) : 

& 

€ 

δ f (t)( )dt
−∞

∞

∫ =
i: f (ti )=0
∑ 1

f '(ti)
δ x( )dx =

−∞

∞

∫
i: f (ti )=0
∑ 1

f '(ti)

€ 

δ f (t)( )dt
−∞

∞

∫ =
i: f (ti )=0
∑ 1

f '(ti)



14-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 7 

Truncations and Generalised functions 
•  To approximate the Fourier transform of f(t)=1, use truncation. 

•  Then for f(t)=1  

–  When  T→∞  then this function is zero everywhere except at ω=0 and its 
integral is 2π, i.e.  

–  Note: F{1} exists only as an asymptotic of an ordinary function,  
i.e. a generalised function. 

Truncation of a function f(t): 

, such that  

  

€ 

F fT (t){ } = fT (t)e
− iωt

−∞

∞

∫ dt = 1e−iωt
−T

T

∫ dt =
sin(ωt /2)
ω /2



•  An alternative to truncation is exponential decay 

–  The sign function sgn(t): 

The generalised function is the Cauchy principal value function: 

–  Heaviside function f(t)=H(t) : 

This generalised function is often written as: 
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More generalised function 

, such that  

€ 

f (t) = lim
η→ 0

fη (t)

  

€ 

F fη (t){ } =
2πη

ω 2 +η2

  

€ 

F sgn(t){ } = lim
η→ 0

F e−η t sgn(t){ } = lim
η→ 0

2iω
ω2 +η2

= 2i℘ 1
ω

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

•  Three important examples:  
–  f(t)=1 (alternative definition of δ-function) 
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Plemelj formula 
•  Relation between H(t) and sgn(t): 

with the Fourier transform: 

This is known as the Plemelj formula  

–  We will use the Plemelj formula when describing resonant wave damping 
(see later lectures) 



•  Fourier transform: 

•  Solution: 

where 
•  Take limit when damping ν goes to zero: 

use Plemelj formula 
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Driven oscillator with dissipation 
•  Example illustrating the Plemelj formula: a driven oscillator with 

eigenfrequency Ω : 

with dissipation coefficient ν : 
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Physics interpretation of Plemej formula 
•  For oscillating systems:  

eigenfrequency Ω will appear as resonant denominator  

Including infinitely small dissipation and applying Plemelj formula   

•  Later lectures on the dielectric response of plasma: 
When the dissipation goes to zero there is still a wave damping called 
Landau damping, a “collisionless” damping, which comes from the δ-
function  

€ 

f (ω) ~ 1
ω ±Ω

   ⇔    f (t) ~ e±iΩt
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Square of δ-function 

•  To evaluate square of δ-function 

–  Thus also the integral of the δ2 goes to infinity as T → ∞ ! 

–  Luckily, in practice you usually find δ 2 in the form δ 2 / T , which is integrable! 
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Outline 

–  Fourier transforms 
•  Fourier’s integral theorem 
•  Truncations and generalised functions 
•  Plemej formula 

–  Laplace transforms and complex frequencies 
•  Theorem of residues 
•  Causal functions 
•  Relations between Laplace and Fourier transforms 

–  Greens functions 
•  Poisson equation 
•  d’ Alemberts equation 
•  Wave equations in temporal gauge 

–  Self-study: linear algebra and tensors 
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Laplace transforms and complex frequencies (Chapter 8) 

•  Fourier transform is restricted to handling real frequencies, i.e. not 
optimal for damped or growing modes 

–  For this purpose we need the Laplace transforms, which allow us to 
study complex frequencies. 

•  To understand better the relation between Fourier and Laplace 
transforms we will first study the residual theorem and see it 
applied to the Fourier transform of causal functions. 
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The Theorem of Residues 

•  Expand f(z) around singularity, z=zi: 
–  the point z=zi is called a pole 
–  the numerator Ri is the residue 

•  The integral along closed contour in the complex plane  
can be solved using the theorem of residues 

–  where the sum is over all poles zi inside the contour € 

f (z)dz =
C
∫ 2πi Ri

i
∑

€ 

f (z) ≈ Ri

(z − zi)
+ c0 + c1(z − zi) + ...

Poles zi 

Im(ω) 

Re(ω) 

C 

•  Example:  f(z)=1/z and C encircling a poles at z=0  
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Causal functions 

•  Causal functions:  
functions fc that “start” at t=0, i.e. fc(t)=0 for t<0. 

•  Example: causal damped oscillation fc(t) = e-γ t cos(Ω t), for t>0    

–  The two denominators are poles in the complex ω plane  
–  Both poles are in the upper half of the complex plane Im(ω)<0  

•  Causal function are suitable for Laplace transformations 
–  to better understand the relation between Laplace and Fourier transforms;  

study the inverse Fourier transform of the causal damped oscillator 

poles 
Im(ω) 

Re(ω) 

  

€ 

F{ fc (t)} = e−iwte−γt cos(Ωt)
−∞

∞

∫ dt =
i
2

1
ω −Ω − iγ /2

+
1

ω +Ω− iγ /2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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Causal functions and contour integration  

•  Use Residual analysis for inverse Fourier transform of the causal damped  
oscillation 

€ 

fc (t) =
1
2π

eiωt
C
∫ i

2
1

ω −Ω+ iγ /2
+

1
ω +Ω+ iγ /2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dω

= − iRi
i
∑ = −i i

2
e(iΩ−γ / 2)t + e(− iΩ−γ / 2)t[ ]

  

€ 

F−1{ fc (t)} =
1

2π
dω eiωt∫ i

2
1

ω −Ω − iγ /2
+

1
ω +Ω− iγ /2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

t<0 Im(ω) 

Re(ω) 

C 

€ 

lim
ω →∞

˜ f c (ω ) ~ 1/ω →0

t>0 
Im(ω) 

Re(ω) 

C 

•  For t>0:  
–  eiωt →0 ,  for Im(ω) →∞   &  

close contour with half circle Im(ω)>0   
–  Inverse Fourier transform is sum of residues from poles 

•  For t<0:  
–  eiωt →0 ,  for Im(ω) →-∞;  

close contour with half circle Im(ω)<0   
–  No poles inside contour: f(t)=0 for t<0   
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Laplace transform 
•  Laplace transform of function f(t) is 

–  Like a Fourier transform for a causal function, but iω → s. 

•  Region of convergence: 
–  Note: For Re(s)<0 the integral may not converge since the factor e-st diverges 

–  Consider function  

F(s) is integrable only if  

Thus, the Laplace transform is only valid for  

Note:         means pole at s=ν,  
i.e. all poles to the right of region of convergence 

–  Laplace transform allows studies of unstable modes; eγ t ! 

Im(s) 

Re(s) 

L{ f(t) } converges! 
€ 

f (t) = eνt ⇒ F(s) = e(ν−s)t
0

∞

∫ dt
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Laplace transform 
•  Laplace transform  

•  For causal function the inverse transform is: 

–  Here the parameter Γ should be in the region of convergence, i.e. chosen such  
that all poles lie to the right of the integral contour Re(s)=Γ. 

–  Causality: since all poles lie right of integral contour, L-1{ f (ω) }(t)=0, for t<0.  
•  Proof: see inverse Fourier transform fo causal damped harmonic oscillator  

(Hint: close contour with semicircle Re(s)>0 ) 

–  Thus, only for causal function is there an inverse 

•  Again: Laplace transform allows studies of unstable modes; eγ t ! 

Γ	


Im(s) 

Re(s) 

€ 

€ 

f (t) = L−1{F(s)} = estF(s)dt
Γ− i∞

Γ+ i∞
∫

€ 

f (t) = L−1 L{ f (t)}{ }
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Complex frequencies 
•  Formulas for Laplace and Fourier transform very similar  

–  Laplace transform for complex growth rate s / Fourier for real frequencies ω	

–  For causal function, Laplace transform is more powerful 
–  For causal function, Fourier transforms can often be treated like a Laplace transform 

•  Let s=iω, provide alternative formulation of the Laplace transform 

•  Here ω is a complex frequency 
•  The inverse transform for causal functions is 

–  for decaying modes all poles are above the real axis and Γ=0. 
•  Thus, the Laplace and Fourier transforms are the same for 

amplitude integrable causal function, but only the Laplace  
transform is defined for complex frequencies. 

Γ	


Im(ω) 

Re(ω) 

€ 

€ 

ˆ F (ω) = L{ f (t)} =
lim
ε →0

e−iωt f (t)dt
−ε

+∞

∫ = e− iωt f (t)dt
−∞

+∞

∫

€ 

f (t) = L−1{ ˆ F (ω)} = eiωt ˆ F (ω)dt
−iΓ−∞

−iΓ+∞

∫
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Outline 

–  Fourier transforms 
•  Fourier’s integral theorem 
•  Truncations and generalised functions 
•  Plemej formula 

–  Laplace transforms and complex frequencies 
•  Theorem of residues 
•  Causal functions 
•  Relations between Laplace and Fourier transforms 

–  Greens functions 
•  Poisson equation 
•  d’ Alemberts equation 
•  Wave equations in temporal gauge 

–  Self-study: linear algebra and tensors 
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Greens functions (Chapter 5) 
•  Greens functions: technique to solve inhomogeneous equations 
•  Linear differential equation for f given source S: 

–  Where the differential operator L is of the form: 

•  Define Greens function G to solve:  

–  the response from a point source – e.g. the fields from a particle! 
•  Ansatz: given the Greens function, then there is a solution: 

•  Proof: 
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How to calculate Greens functions? 
•  For differential equations without 

explicit dependence on z, then 

–  we may rewrite G as: 

•  Fourier transform from z-z’ to k : 

•  Inverse Fourier transform 

Solve integral! 

€ 

L(z − z')G(z − z') = δ(z − z')
€ 

G(z,z')→G(z − z')

€ 

G(z − z') =
1
2π

G(k)e−ik(z−z' )
−∞

∞

∫ dk =
1
2π

1
L(ik)

e−ik(z−z' )
−∞

∞

∫ dk

Example: 

€ 

−ω2 +Ω2( )G(ω) = 2π

€ 

G(ω) = −
2π

ω2 −Ω2

€ 

∂2

∂t 2
+Ω2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ G(t − t ') = δ(t − t')

€ 

L(z) = L(z − z')
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Greens function for the Poisson’s Eq. for static fields 
•  Poisson’s equation 

•  Green’s function 

•  Thus, we obtain the familiar solution; a sum over all sources 

€ 

ε0∇
2φ(x) = −ρ(x)

€ 

−ε0∇
2G(x − x') = δ(x − x')
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Greens Function for d’Alembert’s Eq. (time dependent field) 
•  D’Alembert’s Eq. has a Green function G(t,x)   

•  Fourier transform                                  gives 

–  Information is propagating radially away from the source at 
the speed of light 

€ 

1
c 2

∂2

∂t 2
−∇2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ G(t − t ',x − x') = µ0δ(t − t ')δ

3(x − x')

€ 

G(t − t',x − x') =
µ0

4π x − x'
δ(t − t '−x − x' /c)

€ 

(t − t ',x − x')→(ω,k)
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Greens Function for the Temporal Gauge 
•  Temporal gauge gives different form of wave equation 

–  Different response in longitudinal : 

–  and transverse directions: 

•  To separate the longitudinal and transverse parts the Greens function 
become a 2-tensor Gij   

•  Solution has poles ω = ± |k| c : 
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Outline 

–  Fourier transforms 
•  Fourier’s integral theorem 
•  Truncations and generalised functions 
•  Plemej formula 

–  Laplace transforms and complex frequencies 
•  Theorem of residues 
•  Causal functions 
•  Relations between Laplace and Fourier transforms 

–  Greens functions 
•  Poisson equation 
•  d’ Alemberts equation 
•  Wave equations in temporal gauge 

–  Self-study: linear algebra and tensors 
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Self-study: Linear algebra 
•  The inner product 

–  The repeated indexed are called “dummy” indexes 

•  The outer product 

–  Express a and b in a basis [e1, e2, e3] 

–  e.g.  

€ 

a • b = a1 a2 a3[ ]
b1
b3
b3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= a1b1 + a2b2 + a3b3 = a jb j
j=1

3

∑ ≡ a jb j

Einsteins summation convention: 
”always sum over repeated indexes” 

€ 

b⊗a =

b1
b3
b3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
a1 a2 a3[ ] =

a1b1 a2b1 a3b1
a1b2 a2b2 a3b2
a1b3 a2b3 a3b3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

€ 

b⊗a = aie i
i=1

3

∑ ⊗ bje j
j=1

3

∑ = b jai e i ⊗ e j[ ]

€ 

e2 ⊗ e3[ ] =

0
1
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
0 0 1[ ] =

0 0 0
0 0 1
0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

Note: 9 terms 
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Self-study: Vectors 
•  Vectors are defined by a length and a direction. 

–  Note that the direction is independent of the  
coordinate system, thus the components depend  
on the coordinate system 

–  thus in the (x, y) systems the components may be: 

–  then for 30 degrees between the coordinate  
systems (u, v) components are: 

•  The relation between vectors are given by transformation matrixes 
–  if transformation is a rotation then transformation matrixes 

€ 

F = Fie i = Fi 'e i '
e1 

e2 

e1’ 

e2’ 

F 

€ 

F1
F2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

1
1
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 

€ 

F1'
F2 '
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

1/2
3/2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

Fi '= RijFj    ;   Rij[ ] ≡ R11 R12

R21 R22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

cos(ν) −sin(ν)
sin(ν) cos(ν)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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Self-study: Tensors 
•  Tensors are also independent of coordinate system 
•  Examples: 

–  A scalar is a tensor of order zero. 
–  A vector is a tensor of order one. 

•  Tensors of order two in 3d space has 3 directions and 3 magnitudes 
–  For a given coordinate system a tensor T of order two (or a 2-tensor) 

can be represented by a matrix 

•  Transformation of 2-tensors 
–  Transformation the basis: 

€ 

T = Tije i ⊗ e j ≡ Tije ie j   ;   Tij[ ] ≡
T11 T12 T13

T21 T22 T23

T31 T32 T33

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

€ 

e i '≡ Rln[ ]−1e j   ;   T= Tije ie j

= Tij Rik[ ] Rkm[ ]−1
em R jl[ ] Rln[ ]−1

en

= Rik[ ]Tij R jl[ ]em 'en '≡ Tij 'em 'en '

€ 

Tij '= RikTijR jl€ 

F = Fi Rik[ ] Rkm[ ]−1em = Fk ' Rkm[ ]−1em ≡ Fk 'ek '


