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Equilibria (0,0), (=1, —1), (1, 1) with corresponding Jacobians A = [-2 1; —1 1],
A =0 1;—1 1] (same for latter two). Corresponding eigenvalues are —0.5 +
V5 /2 and 0.5 £ iv3 /2. Thus, origin is an unstable saddle point and the two
other are unstable focus points.

E.g., the control u = —x5 will make the origin a stable node with eigenvalue

—1,—1.

We try the Lyapunov candidate V' = 0.5(x3+z3) > 0 and get V = xy@ 429y =
2

2231 + 2% + 11wy — T1T9 = —% < 0 which is zero whenever x; = 0. Need

LaSalle to show that the origin z; = x5 = 0 is the only invariant solution
with V = 0. From the differential equation we get that 1 = x9 when z; = 0
and hence x; = 0 is invariant only when also xo = 0. Since also V' is radially
unbounded we have proven global asymptotic stability of the origin.

(i) Atz = —2 we have #; = 15— 2(—3—123) > 0Vx; and hence all trajectories
point inwards from this line. Similar reasoning for 1 = 2,25 = —2, 25 = 2
gives that all trajectories point inwards and hence the region is invariant.

(ii) An invariant region must contain a stable stationary solution. The only
equilbrium within the region is x; = x5 = 0 which is unstable with eigen-
value 1 + 7, i.e., unstable focus. Thus, there must be a stable limit cycle
within the region (2nd order systems can only have steady-states or limit
cycles as stationary solutions).

We employ the control Lyapunov function V' = 0.5(z% + x3) which yields

—X1T2 —T1X2
2 + 21U

V=
1+23 1422

By choosing the control law

1 1
A (Hx% " 1+x%> -
we get V = —22. Thus V =0 when z; = 0, but since & # 0 if 21 = 0,25 # 0
only the origin is invariant with V' = 0. LaSalle proves global asymptotic
stability of the origin.

(i) Choose z; = x3, 29 = &2 to avoid involving u in transformed variables. This
vields 21 = 2z and 2y = —&; — 2@9@9 = —sin(xy) — 23 + 22129 + 225 — u
and choosing

u = —sin(z;) — o3 + 2r129 + 275 — v

yields 21 = 23, 29 = v which is linear.
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(i) The system has relative degree one since § = sin(x1) + x3 + u and the
controller u = —sin(z;) — 3 + v yields a linear input-output relationship
y = v. The zero dynamics are given by & = —z2 which is unstable. Since
the zero dynamics are unstable, input-output linearizing control should
not be used for this system.

The sliding set is 0 = x1+29 = 0 and this can be shown to be globally attracting
by employing V = 0.502 which yields V = —¢? — osign(o) < 0 and equal to
zero only when o = 0. On the sliding set ¢ = 21 + 2y = 29 — 21 — 222 + Uy =
—T1 — Ty + Uegqg = Ueq and hence the equivalent control u = 0.

Without the saturation and deadband, the controller is given by F(s) = K.
The transfer function G,.(s) from r to y is given by

KG(s)  (s+3) K K

G.(s) = = = )
(5) 1+ KG(s) 1+ L (5+%)2+K s?+s+1i4+ K

(1)

By the Routh-Hurwitz criterion, the poles of G.(s) lie in the left half complex
plane if and only if K > —1. Alternatively, one can solve (1) and obtain

1 1 1 1
— sty K=——+V-K
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which satisfies R(s) < 0 if and only if K > —Z. Hence the feedback loop is
stable for any positive value of K.

First we note that G(s) has a double pole in s = —1, and hence G(s) is stable.
We now calculate the gain of F', and obtain

(F) [ Felly _ H KH K
= Su = = — ,
! cets llel, D+Z KD+H 14%D

which is the highest amplification of F', obtained at the point for which the
controller saturates.

The gain of G(s) is given by

: 1 1
v(G(s)) = sup |G(iw)| = sup — 3| = sw G —1=4%
we0,00) wel0,00) (zw + 5) we0,00) W5 T g

By the small gain theorem, the feedback loop is stable if v(F)y(G(s)) < 1,
which gives

4K
<leK<——.
14 £2 AH — D

We have




from which we get

12
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Hence, G(s) is not passive, and we cannot guarantee stability of the feedback
loop by the passivity theorem.

From (b) we already know that

F(e) - KH
e KD+ H’
Furthermore
F
©
e
so F(e) is bounded by the sector [ki, ko] = [0, KI[{)ZH]. By the circle criterion,
the feedback loop is stable if the Nyquist curve of G(s) does not encircle or inter-
sect the smallest circle containing the line segment [—kil, —é] = [—o0, —BZLH),
This criterion corresponds to
KD+ H
' —_ > 0. 2
R(G(iw)) > H Yw >0 (2)
Recall the expression for (G (iw)) from (c):
L2 L_ 2
%(G(@w)) — (4 w ) — (4 w ) (3)

((-w?)’+w?  (Ftw?)”

We need to obtain a lower bound for R(G(iw)) to guarantee that (2) is satisfied.
The extreme values of R(G(iw)) are given either by the critical points, or the
end points of the interval [0, 00). Differentiating (3) and setting the derivative
to zero yields

5, 2w (24 w?)? —dw (2 4+ w?) (2 —w?

a—%(G(ZW)) — (4 ) . (44 ) (4 ) — 0’

w (i+w?)

which gives w = 0 or

o) o) o)) - (o) )

which gives either w? = —i or w? = %. The first solution can be discarded since

it yields imaginary solutions roots. The second solution yields the positive root
w= ‘/75 Inserting the two real and positive roots in (3) yields




We also have to check the limit when w — +oo:

lim R(G(iw)) = lim G-v)

w——400 w——400 (4_1L _|_w2)2

We see that R(G(iw)) > —3. Thus, the circle criterion gives

1 KD+H<:>KD+H>1<:;> KH c9 e K< 2H
KH KH 2 KD+H H—-2D

Alternative solution: We can also solve the equation R(G(iw)) = ¢, and
obtain the minimal ¢ for which there exists a real and positive solution w. We
get from (3) that
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Solving for w? yields

uJ2:_c+2:|:\/(c+2)2—|—c(4—c):_0—1—2:&\/80+4. (4)
4c 4c 4c 4c

In order for the solution w? to be real, we must have 8¢ + 4 > 0, which gives

¢ > —3. Inserting ¢ = —3% in (4) yields w? = 2, with the real and positive

solution w = ‘/75 Hence R(G(iw)) > —3.
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min wldt
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subject to @ = —dz(t) + u(t), z(0) = 0, x(24) = 12. Here we have introduced
x =T —10.

Without any heat loss, the amount of energy needed to heat the lecture hall to
x(24) = 12 is the same indepdent of the shape of u(t). However, since we have
a square objective function it is optimal to heat with a constant u = 12/24

The optimal control problem is

Form the Hamiltonian
H = ngu® + \(—0.02z(t) + u(t))
and the optimal solution for 0H/0u = 2nou*(t) + A\(t) =0 =

)

2’/10

To ensure minimum we require 9>H/du? = 2ny > 0 or ng > 0. The Lagrange
multiplier A(¢) is determined from

A= 0.02)(1), A(t;) = p



which yields

A
A(t) =A™ = u(t) = — =0
2710
The choice \g = p/e®*® ensures A(t;) = p, but since p is a free parame-

ter we might as well keep A\g as the free parameter. To determine \g/2ng

in u(t) we solve the differential equation z(t) = —;‘TOO 024 e~ 0021 002(t=7) g7 —

— 20 e0.02t95(1 — ¢799) and to obtain x(24) = 12 we get

2ng

12 1
u(t) T 95 048 _ —0.48

The optimal heating corresponds to an input that gives a linear increase in the
room temperature over the whole period. Comparing e.g. to the policy with
constant heating over the period the saving is about 2%, i.e., not impressive but
still. Also note that with no constraints on u and the objective of minimizing
the energy consumption as such (and not the square), the optimal input would
be a Dirac pulse at ¢t = 24h.

From (b) we have that a constant heating of u = 0.5 is needed to achieve
the required temperature without any heat loss, and hence we can not satisfy
the boundary condition z(t;) = 12 with the constraint v < 0.1. The problem
would not be feasible.



