
AUTOMATIC CONTROL
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Answers January 18, 2014

1. (a) Equilibria (0, 0), (−1,−1), (1, 1) with corresponding JacobiansA = [−2 1;−1 1],
A = [0 1;−1 1] (same for latter two). Corresponding eigenvalues are −0.5 ±√

5/2 and 0.5 ± i
√

3/2. Thus, origin is an unstable saddle point and the two
other are unstable focus points.

(b) E.g., the control u = −x2 will make the origin a stable node with eigenvalue
−1,−1.

(c) We try the Lyapunov candidate V = 0.5(x21+x
2
2) ≥ 0 and get V̇ = x1ẋ1+x2ẋ2 =

−2x211 + x21 + x1x2 − x1x2 = − 2x21
1+x21

≤ 0 which is zero whenever x1 = 0. Need

LaSalle to show that the origin x1 = x2 = 0 is the only invariant solution
with V̇ = 0. From the differential equation we get that ẋ1 = x2 when x1 = 0
and hence x1 = 0 is invariant only when also x2 = 0. Since also V is radially
unbounded we have proven global asymptotic stability of the origin.

2. (a) (i) At x1 = −2 we have ẋ1 = x2−2(−3−x22) > 0∀x2 and hence all trajectories
point inwards from this line. Similar reasoning for x1 = 2, x2 = −2, x2 = 2
gives that all trajectories point inwards and hence the region is invariant.

(ii) An invariant region must contain a stable stationary solution. The only
equilbrium within the region is x1 = x2 = 0 which is unstable with eigen-
value 1 ± i, i.e., unstable focus. Thus, there must be a stable limit cycle
within the region (2nd order systems can only have steady-states or limit
cycles as stationary solutions).

(b) We employ the control Lyapunov function V = 0.5(x21 + x22) which yields

V̇ =
−x1x2
1 + x22

+
−x1x2
1 + x21

+ x1u

By choosing the control law

u = x2

(
1

1 + x21
+

1

1 + x22

)
− x1

we get V̇ = −x21. Thus V̇ = 0 when x1 = 0, but since ẋ1 6= 0 if x1 = 0, x2 6= 0
only the origin is invariant with V̇ = 0. LaSalle proves global asymptotic
stability of the origin.

3. (a) (i) Choose z1 = x2, z2 = ẋ2 to avoid involving u in transformed variables. This
yields ż1 = z2 and ż2 = −ẋ1 − 2x2ẋ2 = − sin(x1) − x22 + 2x1x2 + 2x32 − u
and choosing

u = − sin(x1)− x22 + 2x1x2 + 2x32 − v
yields ż1 = z2, ż2 = v which is linear.
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(ii) The system has relative degree one since ẏ = sin(x1) + x22 + u and the
controller u = − sin(x1)− x22 + v yields a linear input-output relationship
ẏ = v. The zero dynamics are given by ẋ2 = −x22 which is unstable. Since
the zero dynamics are unstable, input-output linearizing control should
not be used for this system.

(b) The sliding set is σ = x1+x2 = 0 and this can be shown to be globally attracting
by employing V = 0.5σ2 which yields V̇ = −σ2 − σsign(σ) ≤ 0 and equal to
zero only when σ = 0. On the sliding set σ̇ = ẋ1 + ẋ2 = x2 − x1 − 2x2 + ueq =
−x1 − x2 + ueq = ueq and hence the equivalent control u = 0.

4. (a) Without the saturation and deadband, the controller is given by F (s) = K.
The transfer function Gc(s) from r to y is given by

Gc(s) =
KG(s)

1 +KG(s)
=

K

(s+ 1
2)

2

1 + K

(s+ 1
2)

2

=
K(

s+ 1
2

)2
+K

=
K

s2 + s+ 1
4

+K
. (1)

By the Routh-Hurwitz criterion, the poles of Gc(s) lie in the left half complex
plane if and only if K > −1

4
. Alternatively, one can solve (1) and obtain

s = −1

2
±
√

1

4
− 1

4
−K = −1

2
±
√
−K,

which satisfies <(s) < 0 if and only if K > −1
4
. Hence the feedback loop is

stable for any positive value of K.

(b) First we note that G(s) has a double pole in s = −1, and hence G(s) is stable.
We now calculate the gain of F , and obtain

γ(F ) = sup
e∈L2

‖Fe‖2
‖e‖2

=
H

D + H
K

=
KH

KD +H
=

K

1 + KD
H

,

which is the highest amplification of F , obtained at the point for which the
controller saturates.

The gain of G(s) is given by

γ(G(s)) = sup
ω∈[0,∞)

|G(iω)| = sup
ω∈[0,∞)

∣∣∣∣∣∣ 1(
iω + 1

2

)2
∣∣∣∣∣∣ = sup

ω∈[0,∞)

1

ω2 + 1
4

= 4.

By the small gain theorem, the feedback loop is stable if γ(F )γ(G(s)) < 1,
which gives

4K

1 + KD
H

< 1⇔ K <
H

4H −D
.

(c) We have

G(iω) =
1(

iω + 1
2

)2 =
1(

1
4
− ω2

)
+ iω

=

(
1
4
− ω2

)
− iω(

1
4
− ω2

)2
+ ω2

,
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from which we get

<(G(iω)) =

(
1
4
− ω2

)(
1
4
− ω2

)2
+ ω2

< 0 when ω2 >
1

4
.

Hence, G(s) is not passive, and we cannot guarantee stability of the feedback
loop by the passivity theorem.

(d) From (b) we already know that

F (e)

e
<

KH

KD +H
.

Furthermore

F (e)

e
> 0,

so F (e) is bounded by the sector [k1, k2] = [0, KH
KD+H

]. By the circle criterion,
the feedback loop is stable if the Nyquist curve ofG(s) does not encircle or inter-
sect the smallest circle containing the line segment [− 1

k1
,− 1

k2
] = [−∞,−KD+H

KH
].

This criterion corresponds to

<(G(iω)) > −KD +H

KH
∀ω ≥ 0. (2)

Recall the expression for <(G(iω)) from (c):

<(G(iω)) =

(
1
4
− ω2

)(
1
4
− ω2

)2
+ ω2

=

(
1
4
− ω2

)(
1
4

+ ω2
)2 . (3)

We need to obtain a lower bound for <(G(iω)) to guarantee that (2) is satisfied.
The extreme values of <(G(iω)) are given either by the critical points, or the
end points of the interval [0,∞). Differentiating (3) and setting the derivative
to zero yields

∂

∂ω
<(G(iω)) =

−2ω
(
1
4

+ ω2
)2 − 4ω

(
1
4

+ ω2
) (

1
4
− ω2

)(
1
4

+ ω2
)4 = 0,

which gives ω = 0 or(
1

4
+ ω2

)2
(

2

(
1

4
+ ω2

)2

+ 4

(
1

4
− ω2

)2
)

=

(
1

4
+ ω2

)2(
3

2
− 2ω2

)
= 0,

which gives either ω2 = −1
4

or ω2 = 3
4
. The first solution can be discarded since

it yields imaginary solutions roots. The second solution yields the positive root
ω =

√
3
2

. Inserting the two real and positive roots in (3) yields

<(G(0)) =

(
1
4

)(
1
4

)2 = 4

<
(
G
(
i

√
3

4

))
=

(
1
4
− (

√
3
2

)2
)

(
1
4

+ (
√
3
2

)2
)2 =

1
4
− 3

4(
1
4

+ 3
4

)2 = −1

2
.
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We also have to check the limit when ω → +∞:

lim
ω→+∞

<(G(iω)) = lim
ω→+∞

(
1
4
− ω2

)(
1
4

+ ω2
)2 = 0.

We see that <(G(iω)) > −1
2
. Thus, the circle criterion gives

−1

2
> −KD +H

KH
⇔ KD +H

KH
>

1

2
⇔ KH

KD +H
< 2⇔ K <

2H

H − 2D
.

Alternative solution: We can also solve the equation <(G(iω)) = c, and
obtain the minimal c for which there exists a real and positive solution ω. We
get from (3) that

<(G(iω)) =

(
1
4
− ω2

)(
1
4

+ ω2
)2 = c⇔

(
1

4
− ω2

)
= c

(
1

4
+ ω2

)2

⇔ cω4 +
c+ 2

2
ω2 +

c− 4

16
= 0

Solving for ω2 yields

ω2 = −c+ 2

4c
±
√

(c+ 2)2 + c(4− c)
4c

= −c+ 2

4c
±
√

8c+ 4

4c
. (4)

In order for the solution ω2 to be real, we must have 8c + 4 ≥ 0, which gives
c ≥ −1

2
. Inserting c = −1

2
in (4) yields ω2 = 3

4
, with the real and positive

solution ω =
√
3
2

. Hence <(G(iω)) > −1
2
.

5. (a) The optimal control problem is

min
u

∫ 24

0

u2dt

subject to ẋ = −δx(t) + u(t), x(0) = 0, x(24) = 12. Here we have introduced
x = T − 10.

(b) Without any heat loss, the amount of energy needed to heat the lecture hall to
x(24) = 12 is the same indepdent of the shape of u(t). However, since we have
a square objective function it is optimal to heat with a constant u = 12/24

(c) Form the Hamiltonian

H = n0u
2 + λ(−0.02x(t) + u(t))

and the optimal solution for ∂H/∂u = 2n0u
∗(t) + λ(t) = 0 ⇒

u = −λ(t)

2n0

To ensure minimum we require ∂2H/∂u2 = 2n0 > 0 or n0 > 0. The Lagrange
multiplier λ(t) is determined from

λ̇ = 0.02λ(t), λ(tf ) = µ
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which yields

λ(t) = λ0e
0.02t ⇒ u(t) = − λ0

2n0

e0.02t

The choice λ0 = µ/e0.48 ensures λ(tf ) = µ, but since µ is a free parame-
ter we might as well keep λ0 as the free parameter. To determine λ0/2n0

in u(t) we solve the differential equation x(t) = − λ0
2n0

∫ 24

0
e−0.02τe0.02(t−τ)dτ =

− λ0
2n0
e0.02t25(1− e−0.96) and to obtain x(24) = 12 we get

u(t) =
12

25

1

e0.48 − e−0.48

The optimal heating corresponds to an input that gives a linear increase in the
room temperature over the whole period. Comparing e.g. to the policy with
constant heating over the period the saving is about 2%, i.e., not impressive but
still. Also note that with no constraints on u and the objective of minimizing
the energy consumption as such (and not the square), the optimal input would
be a Dirac pulse at t = 24h.

(d) From (b) we have that a constant heating of u = 0.5 is needed to achieve
the required temperature without any heat loss, and hence we can not satisfy
the boundary condition x(tf ) = 12 with the constraint u < 0.1. The problem
would not be feasible.
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