Examination

Applied Programming and Computer Science, The examination in this course will include two parts:

DD2325/appc513 1 computer assignments (LABL; 4,5 cr).
Mandatory. Grade P/F.

2 written exam in January (TENL; 3 cr)
Grade A,B,C,D,E,FX,F.

Computer assignments:

PODF, Programmering och datalogi for fysiker,
DA7011

C. Edlund, A. Maki

atsuto®@kth se 1 Evaluation Using Reverse Polish Notation
2 Debugging in MATLAB and A Quicksort Implementation
Course homepage: https://www.kth.se/social/course/DD2325/ 3 Newton-Raphson’s method

4 Numerical solution of the heat equation
5 Sparse Vector Arithmetic

Demonstrations will be done during lab hours.

e e
Goal
An overall goal with the course is to improve the programming @ compare algorithms with respect to time and memory needs,
technique and the knowledge about program and data structures. complexity

@ describe algorithms for searching and sorting

After completing the course the student should be able to o formulate and implement recursive algorithms
@ implement and use stacks, queues, trees, hash tables and hash
@ write structured programs in Matlab and small programs C functions
@ do systematic error search in programs @ describe fundamental algorithms for compression
@ describe and use different data types
@ use abstraction as a tool to simplify programming
@ choose a suitable algorithm for a given problem

Recursion

1 n— [teration
f(n) =
nxf(n—1) n>1 function res = fac3(n)
Matlab:
res = 1;
while n>1
function res = facl(n) res = res *n;
n = n-1;
if n== end %while
res = 1;
else end % fac3
res = n*xfacl(n-1);
end % if
end % facil
.| .|

createStack and emptyStack

Stack operations function s = createStack;

@ createStack s = [
o precond: None
e postcond: A stack has been created and initialized to be
empty. The stack is returned.

end % createStack

@ emptyStack

e precond: The stack has been created. function res = emptyStack(s);
e postcond: The function returns true if it is empty otherwise
false. res = (length(s) == 0);

end % emptyStack

push and pop

function s = push(el, s);
s = [el s];

e precond: The stack has been created and is not full. end % push

e postcond: The element has been stored as the stack’s top
element. The updated stack is returned.

@ pop function [el, s] = pop(s);
o precond: The stack has been created and is not empty. if emptyStack(s)
e postcond: The top element of the stack has been removed and el = [1; disp(’error’)
is returned. The updated stack is returned as well. elseif length(s) ==
o top el = s(1);
o precond: The stack has been created and is not empty. s = createStack;
e postcond: A copy of the top element of the stack is returned. elseel - s
s = s(2:end);
end % if
end % pop

Structure and structure array: example _

Manipulate structure array
vip.name = ’alice’;
vip.day = 3; Store data
vip.month = 4;

vip.year = 1900; register(index).field = value

register = setfield(register, {index}, field, value)

Retrieve data
vip(2) .name = ’bo’;

vip(2).day = 1; register(index) .field
vip(2) .month = 12; getfield(register, {index}, field)
vip(2) .year = 1950;

Search, sequential search, seq. cont.

function data = searchStruct(register, element) function data = searchStruct(register, field, element)
found = 0; index = 1; found = 0; index = 1;
len = length(register); len = length(register);
data = []; data = []1;
while (“found) && (index <= len) while (“found) && (index <= len)
if element == register(index).day if element == getfield(register, {index}, field)
found = 1 found = 1
data = register(index) ; data = register(index);
else else
index = index + 1 index = index + 1
end %if end %if
end %while end %while
end %searchStruct end %searchStruct
. . OO

Binary search

The algorithm finds the position of a specified input value within while (~found) && (left <= right)

an array sorted by key value. mid = floor((left + right)/2);
current = getfield(register, {mid}, field);
In each step, it compares the search key value with the key value
of the middle element of the array. if element < current
right = mid - 1;
elseif element > current
left = mid + 1;

else

function data = searchBinStruct(register, field, element) _

found = 1;

data = register(mid);
found = 0; 94

~ end %if

data = []; end %while
left = 1;

. ’) end Y%searchBinStruct
right = length(register);

