
Applied Programming and Computer Science,
DD2325/appcs13

PODF, Programmering och datalogi för fysiker,
DA7011

C. Edlund, A. Maki

atsuto@kth.se

Course homepage: https://www.kth.se/social/course/DD2325/

Examination

The examination in this course will include two parts:

1 computer assignments (LAB1; 4,5 cr).

Mandatory. Grade P/F.

2 written exam in January (TEN1; 3 cr)

Grade A,B,C,D,E,FX,F.

Computer assignments:

1 Evaluation Using Reverse Polish Notation

2 Debugging in MATLAB and A Quicksort Implementation

3 Newton-Raphson’s method

4 Numerical solution of the heat equation

5 Sparse Vector Arithmetic

Demonstrations will be done during lab hours.

Goal

An overall goal with the course is to improve the programming

technique and the knowledge about program and data structures.

After completing the course the student should be able to

write structured programs in Matlab and small programs C

do systematic error search in programs

describe and use di↵erent data types

use abstraction as a tool to simplify programming

choose a suitable algorithm for a given problem

compare algorithms with respect to time and memory needs,

complexity

describe algorithms for searching and sorting

formulate and implement recursive algorithms

implement and use stacks, queues, trees, hash tables and hash

functions

describe fundamental algorithms for compression



Recursion

f (n) =

(
1 n = 1

n ⇥ f (n � 1) n > 1

Matlab:

function res = fac1(n)

if n==1

res = 1;

else

res = n*fac1(n-1);

end % if

end % fac1

Iteration

function res = fac3(n)

res = 1;

while n>1

res = res *n;

n = n-1;

end %while

end % fac3

Stack operations

createStack

precond: None

postcond: A stack has been created and initialized to be

empty. The stack is returned.

emptyStack

precond: The stack has been created.

postcond: The function returns true if it is empty otherwise

false.

createStack and emptyStack

function s = createStack;

s = [];

end % createStack

function res = emptyStack(s);

res = (length(s) == 0);

end % emptyStack



push

precond: The stack has been created and is not full.

postcond: The element has been stored as the stack’s top

element. The updated stack is returned.

pop

precond: The stack has been created and is not empty.

postcond: The top element of the stack has been removed and

is returned. The updated stack is returned as well.

top

precond: The stack has been created and is not empty.

postcond: A copy of the top element of the stack is returned.

push and pop

function s = push(el, s);

s = [el s];

end % push

function [el, s] = pop(s);

if emptyStack(s)

el = []; disp(’error’)

elseif length(s) == 1

el = s(1);

s = createStack;

else

el = s(1);

s = s(2:end);

end % if

end % pop

Structure and structure array: example

vip.name = ’alice’;

vip.day = 3;

vip.month = 4;

vip.year = 1900;

vip(2).name = ’bo’;

vip(2).day = 1;

vip(2).month = 12;

vip(2).year = 1950;

Manipulate structure array

Store data

register(index).field = value

register = setfield(register, {index}, field, value)

Retrieve data

register(index).field

getfield(register, {index}, field)



Search, sequential

function data = searchStruct(register, element)

found = 0; index = 1;

len = length(register);

data = [];

while (~found) && (index <= len)

if element == register(index).day

found = 1

data = register(index);

else

index = index + 1

end %if

end %while

end %searchStruct

search, seq. cont.

function data = searchStruct(register, field, element)

found = 0; index = 1;

len = length(register);

data = [];

while (~found) && (index <= len)

if element == getfield(register, {index}, field)

found = 1

data = register(index);

else

index = index + 1

end %if

end %while

end %searchStruct

Binary search

The algorithm finds the position of a specified input value within

an array sorted by key value.

In each step, it compares the search key value with the key value

of the middle element of the array.

function data = searchBinStruct(register, field, element)

found = 0;

data = [];

left = 1;

right = length(register);

while (~found) && (left <= right)

mid = floor((left + right)/2);

current = getfield(register, {mid}, field);

if element < current

right = mid - 1;

elseif element > current

left = mid + 1;

else

found = 1;

data = register(mid);

end %if

end %while

end %searchBinStruct


