Computational Fluid Dynamics (SG2212/SG3114), 7.5 ECTS

Lecturers:

Philipp Schlatter (PS), pschlatt@mech.kth.se, Mekanik, tel 790 7176
Office hours: Friday 14-15
Ardeshir Hanifi (AH), hanifi@kth.se, Mekanik/FOI, tel 790 8482, 5550 3197
Office hours: Monday 14-15

Assistants:

Azad Noorani (AN), *azad@kth.se*, Mekanik, tel 790 8034 Office hours: Wednesday 14-17 Taras Khapko (TK), *taras@mech.kth.se*, Mekanik, tel 790 6876 Office hours: Thursday 14-17

Literature:

Relevant books:

- Computational Fluid Dynamics, John D. Anderson, Jr., McGraw-Hill, 1995
- *Numerical Computation of Internal & External Flows*, Charles Hirsch, Butterworth-Heinemann, Second Edition, ISBN: 978-0-7506-6594-0.

Lecture notes on Computational Fluid Dynamics (D. Henningson)

Grading:

Exam total of 50p,

Homework (compulsory) 6×2 + project (compulsory) $5 \Rightarrow \max 15p$.

Total points >28 (E), >30 (D), >40 (C), >50 (B), >55 (A).

Web links:

https://www.kth.se/social/course/SG2212/

Homeworks: (5 of 6 are compulsory)

- •Homework 1, due 27/1
- •Homework 2, due 3/2
- •Homework 3, due 10/2

- Homework 4, due 17/2
- Homework 5, due 24/2
- •Homework 6, due 3/3

Project (compulsory):

Project, due 24/3

Course plan

Week 4	Mon	20 Jan	15-17	Q34	Fluid dynamics I: Introduction and outline of the course. Derivation of the governing equation.	AH
	Wed	22 Jan	10-12	Q36	Fluid dynamics II Derivation of the governing equation , cont.	AH
	Fri	24 Jan	10-12	Q33	Fluid dynamics III: Derivation of the governing equation , cont.	AH
Week 5	Mon	27 Jan	15-17	Q34	Basic numerics I: Mathematical behavior of hyperbolic, parabolic and elliptic equation. Well-posedness.	PS
	Wed	29 Jan	10-12	V22	Basic numerics II: Discretization by finite differences. Analysis of discretized equation; order of accuracy, Convergence	PS
	Thu	30 Jan	08-10	Q34	Basic numerics III: Analysis of discretized equation, cont.	PS
	Fri	31 Jan	10-12	Q34	Analysis of discretized equations: Consistency, Convergence and Stability, CFL condition Homework review: Solution of HW1 Description of HW2	PS TK, AN
Week 6	Mon	3 Feb	15-17	Q34	Compressible flow I: Introduction to compressible flow, Euler equation, conservation laws, entropy	PS
	Wed	5 Feb	10-12	V34	Compressible flow II: Numerical methods for conservation laws, Stability, Dispersion, Diffusion	PS
	Fri	7 Feb	10-12	Q36	Compressible flow III: Shock tube, boundary conditions, artificial viscosity Homework review: Solution of HW2 Description of HW3	PS TK, AN
Week 7	Mon	10 Feb	15-17	V34	Compressible flow IV: Systems of conservation laws, Riemann Invariants	PS
	Wed	12 Feb	10-12	Q36	Introduction to incompressible flow. Navier-Stokes in integral form. Finite volume and finite difference methods: Laplace equation on arbitrary grids, equivalence with finite-differences.	AH

					Re-exam	
	Fri	21 Mar	09-13	V01 V22 VSem	Examination	
Week 10	Fri	7 Mar	10-12	Q34	Homework review: Solution of HW6 Demonstration of project	TK, AN
	Thu	6 Mar	08-10	V34	Project supervision	TK, AN
	Wed	5 Mar	10-12	V34	Project lecture	PS
Week 9	Fri	28 Feb	10-12	Q34	Homework review: Solution of HW5 Description of HW6	PS, AH TK, AN
		21100	10-10	Q04	Introduction of project	
	Thu Thu	27 Feb 27 Feb	10-12 13-15	Q33 Q34	Upwind schemes, Flux splitting High-order compact finite differences.	AH
	Wed	26 Feb	10-12	V34	Unstructured Node-Centered FV: consistency and accuracy.	AH
Week 8	Fri	21 Feb	10-12	V22	Homework review: Solution of HW4 Description of HW5	TK, AN
					Complex geometries, Coordinate transformation.	AH
	Thu	20 Feb	08-10	Q34	linear systems: Iterative methods, Gauss-Seidel as smothers for multi-grid	AH
	Wed	19 Feb	10-12	Q34	Projection on divergence-free space, Unsteady incompressible flows: projection method, discrete Poisson pressure eq.	AH
	Mon	17 Feb	15-17	Q34	Steady incompressible flows: Artificial compressibility	AH
					Homework review: Solution of HW3 Description of HW4	TK,AN
	Fri	14 Feb	10-12	Q34	Finite volume and finite difference methods: Cartesian grid and spurious solutions. Staggered grid/volume formulation + BC.	AH