
  

Game Physics

● An overview with focus on determinism



  

About me

● Joacim Jonsson,

● Started computer science at KTH 1996

– Theoretical Computer Science

● Started working with AAA games 1997

● Renegade Ops (2011), SEGA of America

● Just Cause 2 (2010), Square Enix

● Battlefield: Bad Company (2008), Electronic Arts

● RalliSport Challenge 2 (2004), Microsoft

● Headhunter (2001), SEGA Europe



  

About me

● Worked at

– Amuze

– Starbreeze Studios

– Digital Illusions CE

– Avalanche Studios

● On platforms Dreamcast and forward

● With most aspects of game engines anything from 
hand pipelining assembler, rendering, compression, 
animation, AI, network, physics, ...



  

What is Games Physics?

● You tell me, but simulating it usually involves

– Rigid bodies

– Shapes

– Motion states

– Constraints

– Contacts

– Impulses

– ....



  

Time

● What is time and how do we measure it?

– A value in the Cpu frequency counter

– Delta time, dt, is the time-difference between two 
frames was presented to the viewer

– Note: can be important where/when you do the 
sample



  

Time

● Different strategies when it comes to frame updates

– Fixed frame rate,

● Typically 30 or 60 hz

– Non-fixed frame rate,

● Measure time once per frame



  

“Motion picture”

● s = v * dt

– Where v is the velocity

– dt is the time between the frames are presented

– s is the distance measured in the two frames



  

Update gotchas

● The order of things really matters

– Moving gunmen problem

– Each mistake can add one frame extra latency

– Read player input before (!) character update

– Set velocities before (!) physics simulation

– Read back data after (!) physics simulation



  

Fixed delta time

● stall on vertical sync signal

● Simple

– Still hard to make things 100% deterministic!

(replay problem)

● Common for console games



  

Non-Fixed delta time

● Simple suddenly became complex

– update (x dt); update (y dt) != update ((x+y) * dt)

– Latency problem

– Smoothing

– Accumulated smoothing errors

(cutscene problem)

● High end PC gamers and benchmarks expects it.



  

Physics simulation

NOTE: the order is  not written in stone!

● Collision Detection

– adds “contact constraints” on motion equations

● Solve

– Adjust velocities so not to violate constraints

● Integration

– Propagate bodies according to motions



  

Game Physics Evolution 

● 1st gen, just does the 3 steps

– deep penetrations (hard to solve)

– missed collision events (run through walls) 

● 2nd gen, time of impact events / backtracking

– More accurate

– Performance has horrible worst cases

● 3rd gen, predictive / pre stabilization..

–  Stable, good performance, some artifacts



  

Closer look at Collision Detection

● Separated into Broad and Narrow phases

● Narrow phase is detailed

– Generates (potential) contact points

● Broad phase reduces workload

– Sweepline algorithm

– Tree(s)



  

Closer look at narrow phase

● Convex base primitives

● Closest distance, easy problem

– Local minima is global minima

● Penetration, harder problem

– Generally a simulation tries to avoid this

– “shrinked” convexes with a tolerance radius



  

Broadphase/World Gotchas

● Out of broadphase performance

● Secret party at the world origin

– Non set or local space transforms..

– Always init transforms before adding to world



  

Collision Gotchas

● High Detail not always a good thing

– Performance AND design issue

● Triangle meshes dont have a solid inside

– Volumetric geometry better

● Small items cannot use shrink-trick



  

Closer look at Integration

● Body state

– Position and orientation, velocity, angular vel, ..

● Evolves over time, differential equations of motion

● Euler forward integration, for position:

v = v + a dt

x = x + v dt

● Verlet integration

● Again:    foo (x dt); foo (y dt) != foo ((x+y) * dt)



  

Closer look at Solve

!constraints violate constant acceleration!

● Maintains integrity of constraints

– By applying impulses / adjusting velocities

– Errors behave like rubber bands

– Naive pairwise analysis result in endless jitter

● Systems of equations

– Iterative methods



  

Solver gotchas

●  Large relative mass differences

– Iterative solvers converge very slow

– Results in large errors -> rubber bands

● Chains / ropes

– Error correction cancelling

● “Extreme” inertias

– Inverse approx 0 and gyroscope spins

– large errors on constraints

– Tip: Inertia optimizing utility functions...



  

What about Ray Casts?

● Not really part of physics simulation

● But very useful tool for game logic

– Bullets, “sensors”, ai, ...

● Performance often Broad phase related

– Cast directly on bodies / shapes when you can

● Do you really need instant answers?

– Schedule in the background when possible



  

Back to Time again

● Changes in dt

– Integration somewhat sensitive

– Constraint solving usually very sensitive

● Combine fixed and non-fixed dt?

– Yes, at the cost of a slight latency

– Non-fixed sections can interpolate fixed states

– Physics dt decoupled



  

Design gotchas

● Never think the result of a physics setup is 
deterministic

– Use fake / pre animated physics when needed

● you cannot plan the player actions in detail

– You can only set the stage

– more freedom -> less control

– Dont try to make a movie



  

Game control gotchas!

● Set transform

– Essentially it is rapid teleportation (!)

– Penetrations during Collision Detection

● Bad performance

● Sometimes catastrophic!

– Solver has to guess

● Stuff end up in wrong places

● Set velocities instead!



  

Game control gotchas!

● Manually “attaching” objects together

– Solver doesnt know about it

● No force feedback

(Infinite strength if specialized motion)

● Use shared motions or constraints!



  

Physics in a network environment

● Deterministic nightmare

– Constant battle of error correction

– Player accept errors if smooth correction

● Server based

– One consistent “truth”

– responsiveness

● client based

– Security and cheat issues



  

Network / Multiplayer design

● Separate into classes

– effects, debris, ..

– vehicles, character, barrels, ..

– collapsing buildings, “game-changing” events

● Use mixture of client-only, client-server, and pre-
animated physics where appropriate!



  

Time saver

● VISUAL debugging is priceless

– Stop guessing what is happening

– Your visual cortex is amazing
at analyzing information presented in a visual form



  

Questions?
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