

Game Physics

● An overview with focus on determinism

About me

● Joacim Jonsson,

● Started computer science at KTH 1996

– Theoretical Computer Science

● Started working with AAA games 1997

● Renegade Ops (2011), SEGA of America

● Just Cause 2 (2010), Square Enix

● Battlefield: Bad Company (2008), Electronic Arts

● RalliSport Challenge 2 (2004), Microsoft

● Headhunter (2001), SEGA Europe

About me

● Worked at

– Amuze

– Starbreeze Studios

– Digital Illusions CE

– Avalanche Studios

● On platforms Dreamcast and forward

● With most aspects of game engines anything from
hand pipelining assembler, rendering, compression,
animation, AI, network, physics, ...

What is Games Physics?

● You tell me, but simulating it usually involves

– Rigid bodies

– Shapes

– Motion states

– Constraints

– Contacts

– Impulses

–

Time

● What is time and how do we measure it?

– A value in the Cpu frequency counter

– Delta time, dt, is the time-difference between two
frames was presented to the viewer

– Note: can be important where/when you do the
sample

Time

● Different strategies when it comes to frame updates

– Fixed frame rate,

● Typically 30 or 60 hz

– Non-fixed frame rate,

● Measure time once per frame

“Motion picture”

● s = v * dt

– Where v is the velocity

– dt is the time between the frames are presented

– s is the distance measured in the two frames

Update gotchas

● The order of things really matters

– Moving gunmen problem

– Each mistake can add one frame extra latency

– Read player input before (!) character update

– Set velocities before (!) physics simulation

– Read back data after (!) physics simulation

Fixed delta time

● stall on vertical sync signal

● Simple

– Still hard to make things 100% deterministic!

(replay problem)

● Common for console games

Non-Fixed delta time

● Simple suddenly became complex

– update (x dt); update (y dt) != update ((x+y) * dt)

– Latency problem

– Smoothing

– Accumulated smoothing errors

(cutscene problem)

● High end PC gamers and benchmarks expects it.

Physics simulation

NOTE: the order is not written in stone!

● Collision Detection

– adds “contact constraints” on motion equations

● Solve

– Adjust velocities so not to violate constraints

● Integration

– Propagate bodies according to motions

Game Physics Evolution

● 1st gen, just does the 3 steps

– deep penetrations (hard to solve)

– missed collision events (run through walls)

● 2nd gen, time of impact events / backtracking

– More accurate

– Performance has horrible worst cases

● 3rd gen, predictive / pre stabilization..

– Stable, good performance, some artifacts

Closer look at Collision Detection

● Separated into Broad and Narrow phases

● Narrow phase is detailed

– Generates (potential) contact points

● Broad phase reduces workload

– Sweepline algorithm

– Tree(s)

Closer look at narrow phase

● Convex base primitives

● Closest distance, easy problem

– Local minima is global minima

● Penetration, harder problem

– Generally a simulation tries to avoid this

– “shrinked” convexes with a tolerance radius

Broadphase/World Gotchas

● Out of broadphase performance

● Secret party at the world origin

– Non set or local space transforms..

– Always init transforms before adding to world

Collision Gotchas

● High Detail not always a good thing

– Performance AND design issue

● Triangle meshes dont have a solid inside

– Volumetric geometry better

● Small items cannot use shrink-trick

Closer look at Integration

● Body state

– Position and orientation, velocity, angular vel, ..

● Evolves over time, differential equations of motion

● Euler forward integration, for position:

v = v + a dt

x = x + v dt

● Verlet integration

● Again: foo (x dt); foo (y dt) != foo ((x+y) * dt)

Closer look at Solve

!constraints violate constant acceleration!

● Maintains integrity of constraints

– By applying impulses / adjusting velocities

– Errors behave like rubber bands

– Naive pairwise analysis result in endless jitter

● Systems of equations

– Iterative methods

Solver gotchas

● Large relative mass differences

– Iterative solvers converge very slow

– Results in large errors -> rubber bands

● Chains / ropes

– Error correction cancelling

● “Extreme” inertias

– Inverse approx 0 and gyroscope spins

– large errors on constraints

– Tip: Inertia optimizing utility functions...

What about Ray Casts?

● Not really part of physics simulation

● But very useful tool for game logic

– Bullets, “sensors”, ai, ...

● Performance often Broad phase related

– Cast directly on bodies / shapes when you can

● Do you really need instant answers?

– Schedule in the background when possible

Back to Time again

● Changes in dt

– Integration somewhat sensitive

– Constraint solving usually very sensitive

● Combine fixed and non-fixed dt?

– Yes, at the cost of a slight latency

– Non-fixed sections can interpolate fixed states

– Physics dt decoupled

Design gotchas

● Never think the result of a physics setup is
deterministic

– Use fake / pre animated physics when needed

● you cannot plan the player actions in detail

– You can only set the stage

– more freedom -> less control

– Dont try to make a movie

Game control gotchas!

● Set transform

– Essentially it is rapid teleportation (!)

– Penetrations during Collision Detection

● Bad performance

● Sometimes catastrophic!

– Solver has to guess

● Stuff end up in wrong places

● Set velocities instead!

Game control gotchas!

● Manually “attaching” objects together

– Solver doesnt know about it

● No force feedback

(Infinite strength if specialized motion)

● Use shared motions or constraints!

Physics in a network environment

● Deterministic nightmare

– Constant battle of error correction

– Player accept errors if smooth correction

● Server based

– One consistent “truth”

– responsiveness

● client based

– Security and cheat issues

Network / Multiplayer design

● Separate into classes

– effects, debris, ..

– vehicles, character, barrels, ..

– collapsing buildings, “game-changing” events

● Use mixture of client-only, client-server, and pre-
animated physics where appropriate!

Time saver

● VISUAL debugging is priceless

– Stop guessing what is happening

– Your visual cortex is amazing
at analyzing information presented in a visual form

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

