
Applied Programming and Computer Science,
DD2325/appcs13

PODF, Programmering och datalogi för fysiker,
DA7011

C. Edlund, A. Maki
Lecture 4, November 2013

Pointer variables

Pointer variables are intended for pointing at locations in memory
rather than storing values.

They can point to any objects of a specific type, including basic
types, arrays, pointers and functions.

Declaration: type *x;

Initially x points to NULL (=0, no address). x can point to any
variable of correct type.

The object pointed to can be accessed by the (indirection)
dereference operator ⇤.
The address can be obtained by the address operator &.

Pointer variables (cont.)
#include <stdio.h>

int main() {
int alpha;
int *beta;

alpha = 1;
beta = α
printf("The value %d is stored at addr %u.\n", alpha, &alpha);
printf("The value %d is stored at addr %u.\n", beta, &beta);
printf("The value %d is stored at addr %u.\n", *beta, beta);

}

Output:
% gcc -o test test.c
% ./test
The value 1 is stored at addr 1584483176.
The value 1584483176 is stored at addr 1584483168.
The value 1 is stored at addr 1584483176.
%

Pointer variables (cont.)

#include <stdio.h>

void print(int i, int j, int *k) {
printf("%d %d %d\n", i, j, *k);

}

int main() {
int i=0, j=1, *k;

print(i,j,k); /* Run-time Error; k = NULL */
k = &i;
print(i,j,k); /* 0 1 0 */
k = &j;
print(i,j,k); /* 0 1 1 */
j = 2;
print(i,j,k); /* 0 2 2 */
*k = 3;
print(i,j,k); /* 0 3 3 */

}

Pointer variables (cont.)

#include <stdio.h>

int main() {
int i=1, j=2;
int *maxvalue;
if (i >= j)

maxvalue = &i;
else

maxvalue = &j;
printf("Max %d stored at %p.\n", *maxvalue, maxvalue);

}

Output:

Max 2 stored at 0xbffff458.

Since maxvalue points to the memory location occupied by j , changing j

will also change ⇤maxvalue (but not maxvalue).
Similarly, changing ⇤maxvalue will change j .

Passing arguments by reference

Changes made to a parameter inside a function does not a↵ect the
value of the corresponding argument.
A function accepting a pointer as parameter can however change
the value of the referenced object using the dereference operator.

Example: R2
polar

! R

2
Cartesian

int polar2cart(double r, double phi, double *x, double *y) {
if (r < 0)

return 0;

*x = r*cos(phi);
*y = r*sin(phi);
return 1;

}

Function call:

if (polar2cart(R, PHI, &X, &Y) != 1)
fprintf(stderr, "Error in conversion\n");

Scope (are the printouts as expected?)

include <stdio.h>
int e = 5;

void func(int a, int *b, int c){
int d = 140;
a = a + 100;
*b = *b + 200;
c = c + 300;
d = d + 400;
e = e + 500;
printf("Inside func \n %d %d %d %d %d\n\n", a, *b, c, d, e);

}
main(){

int a = 10, *b, c = 30, d = 40;
b = &a;
printf("1st printout: \n%d %d %d %d %d\n\n", a, *b, c, d, e);
func(e, &a, *b);
printf("Last printout: \n%d %d %d %d %d\n\n", a, *b, c, d, e);

}

Summary (pointers)

Pointers are intended for pointing at locations in memory
holding type-specific data.

& - get address of variable (maxvalue = &i ;)

⇤ - value at address (⇤b = ⇤b + 200;)

One-Dimensional Arrays

Some concepts in mathematics cannot be represented in a natural
way using the types we’ve seen so far. One such example is vectors.
All basic types can be extended to be vector-valued (in the
terminology of computer science aggregates of basic types or
arrays).

A one-dimensional array consisting of n elements of the same type

can be declared by type name[n]; and each element in the array

accessed by name[i], where i goes from 0 to n � 1.
Note that the numbering of the components is di↵erent from the
one normally used in mathematics (starting from 0 instead of 1).

NB! If you make a mistake when indexing arrays (i < 0||i >= n)
the compiler will not give a warning, but the program will compute
the wrong result or crash (segmentation fault).

Example: [1.0 , 0.5 , 0.1]T 2 R

3 is defined by

double v[3];

v[0] = 1.0; /* x-component */

v[1] = 0.5; /* y-component */

v[2] = 0.1; /* z-component */

Example:
Computing kxk2 where x 2 R

100 and x

i

= i (numbered from zero):

double x[100];
double l2norm = 0;
int i;

for (i=0 ; i < 100 ; i++)
x[i] = i;

for (i=0 ; i < 100 ; i++)
l2norm += x[i] * x[i];

l2norm = sqrt(l2norm);

Multi-dimensional arrays

Arrays can be extended to 2 (matrices), 3 or even more dimensions,

type name[n1][n2]. . . [nr] and the elements accessed by

name[i1][i2] . . . [ir] where 0 i

j

 n

j

.
Multi-dimensional arrays can be thought of as arrays of arrays.

Example:

The array double x [10][3][5]; can be thought of as belonging to
R

10⇥3⇥5, and its elements accessed by x [i1][i2][i3], where

0 i1 < 10

0 i2 < 3

0 i3 < 5

Multi-d arrays & e�ciency

It is convenient to store matrices as two-dimensional arrays, but
not advisable* for computations due to ine�ciency. A matrix

X ⌘

2

64
x0,0 . . . x0,n�1
...

. . .
...

x

m�1,0 . . . x

m�1,n�1

3

75 2 R

m⇥n

is normally stored in a one-dimensional array double x [lda ⇤ n], with
the mapping from matrix to array defined by x

i ,j ! x [i + j ⇤ lda].

lda is the leading dimension of the matrix, satisfying lda � m

(remnant from Fortran). The leading dimension is the distance
between the first element in column j and the first element in
column j + 1 in the array.

N.B. This format is used in almost every numerical library working
with dense matrices.

* “Introduction to High Performance Computing”.

Arrays as function arguments

Arrays can be used as function arguments but a function cannot
return an array.

Arrays are always passed by reference, that is, all changes to the
parameter will also a↵ect the argument.

We can/must also supply the function information on the length of
the array. For one dimensional arrays, a function declaration may
look like

return-type function-name(int length, type parameter[]);

or equivalently

return-type function-name(int length, type *parameter);

(Other parameters declared as before.)

Example: Computing kxk1
#include <stdio.h>

double maxnorm(int n, double *x) {
/* Compute max | x[i] |, 0 <= i < n */
int i;
double nrm = -1;

for (i=0 ; i<n ; i++)
if (fabs(x[i]) > nrm)
nrm = fabs(x[i]);

return nrm;
}

main()
{

double lista[7] = {7.23, -2, 13, -4.23, -23.42, 18.2, 1};
printf("the maxnorm is: %f\n", maxnorm(7, lista));

}

Bubblesort using array
#include <stdio.h>
#define MAX 7

void bubbel(int lista[]){
int tmp, last, index;
for (last = MAX; last > 0; last--){

for (index = 0;index < last-1; index++){
if (lista[index]> lista[index+1]){

tmp = lista[index];
lista[index] = lista[index+1];
lista[index+1] = tmp;}}}}

main(){
int index, lista[MAX];
for (index = 0;index < MAX; index++){

printf("Enter number: ");
scanf("%d", &lista[index]);}

bubbel(lista);
printf("The sorted list is: ");
for (index = 0;index < MAX; index++)

printf("%d ", lista[index]);}

Pointers as return values

A function can return a pointer variable.

Example: Determining max x
i

, 0 i < n

double* max(double *a, int n) {
int i;
double *p; // a local variable pointing to a non-local object.
p = &a[0];
for (i=1 ; i<n ; i++)

if (a[i] > *p) p = &a[i];
return p;

}
main() {

double a[4] = {2.3, -3.12, 32423.3, 3},
*b;

b = max(a, 4);
printf("Maximum is: %lf \n", *b);

}

The pointer should never point to a local object since memory is freed
when the variable exits scope (unpredictable contents).

Structure definitions

Structures are collections of values (members), possibly of di↵erent
types, used for storing related data.

struct {
type 1 member 1;
...
type n member n

} identifier;

defines a structure variable named identifier with n members.

The value of a member is accessed through identifier.member.
Example, point in R

3

struct {double x, y, z;} point;
point.x = 1.0;
point.y = 0.3;
point.z = -0.5;

Structure definitions (cont.)

A structure can be initialized in the same way as an array,

struct {char name[128];
double x, y, z;

} point = {"origin", 0, 0, 0};

A structure can be associated with a tag, struct tag { ...};

Using the tag, a structure variable can be declared as:
struct tag name;

It is even more convenient to use type definitions, e.g.

typedef struct {
double re;
double im;

} Complex;

main() {
Complex x, y;

}

Pointers to structures

It is sometimes necessary to have pointers to structures.
The members of a structure can be accessed by either of

(*pointer_to_struct).member
pointer_to_struct->member

Example:

Computing complex conjugate:

void conj(Complex *p){
p->im = -p->im;

}

or

void conj(Complex *p){
(*p).im = -(*p).im;

}

Working with structures

Structures can be used as arguments to and return values from
functions.

Structures can also be used in other structure definitions (nested
structures), e.g.

#define MAXDEGREE 10

typedef struct {
int degree;
Complex coeff[MAXDEGREE+1];

} polynomial;

The assignment operator works for structures.
Arithmetic operators are not defined.

Dynamic memory allocation

Memory can be allocated during program execution using the functions
malloc and calloc (stdlib.h)

pointer variable = malloc(size t size);
pointer variable = calloc(size t nmemb, size t size);

calloc initializes the block by setting all bits to 0.

Both these functions allocate memory and return a pointer to the
memory block, or NULL if not enough memory is available.

size t is defined in stdlib.h, and is equivalent to an unsigned int.

nmemb represents the number of elements and size the size of each
element.

Example:

void Heap() {
int* intPtr;

//Allocates local pointer local variable (but not its pointee)

intPtr = malloc(sizeof(int));
*intPtr = 42;

//Allocates heap block and stores its pointer in local variable.
//Dereferences the pointer to set the pointee to 42.

free(intPtr);

//Deallocates heap block making the pointer bad.
//The programmer must remember not to use the pointer
//after the pointee has been deallocated.
}

Deallocating storage

When a memory block is no longer needed, it should be
deallocated so that it can be reused for other purposes.

void free(void *p);

The memory is deallocated, but p still points to the same memory
address. Modifying the memory at p is an error since that memory
is no longer in our control. (p is a dangling pointer.)

free cannot be used to free memory from any other pointer than
one returned by some alloc-routine.

Self-referential structures

A structure with a pointer member that points to the structure
itself is called a self-referential structure.

Example:

struct listNode
{

char data;
struct listNode *nextPtr;

};

typedef struct listNode ListNode;
typedef ListNode *ListNodePtr;

(A typedef can be used to simplify the declaration for a struct or pointer
type, and to eliminate the need for the struct key word.)

With structures like these, one can create dynamic data types like linked
list, stack and queue.

Linked list

Insert a value of character type first in a list.

void insert(ListNodePtr *sPtr, char value)
{

ListNodePtr newPtr;
newPtr = (ListNode *) malloc(sizeof(ListNode));

if (newPtr != NULL){
newPtr->data = value;
newPtr->nextPtr = *sPtr;
*sPtr = newPtr;

}
else

printf("Out of memory!! \n\n");
}

Linked list (cont.)

Write all elements in the linked list on screen,

void printList (ListNodePtr currPtr)
{

if (currPtr == NULL)
printf("The list is empty! \n");

else
{
printf("The elements in the list: ");
while (currPtr != NULL){
printf("%c -- ",currPtr->data);
currPtr = currPtr->nextPtr;
}

}
printf("\n\n");

}

Linked list (cont.)

main()
{

ListNodePtr startPtr = NULL;
char item;
int noOfNodes = 0;

printf("Write data: ");
scanf("\n%c",&item);
while (item != ’q’)

{
insert(&startPtr, item);
printList(startPtr);
printf("Write data: ");
scanf("\n%c",&item);
noOfNodes ++;

}
printf("%d\n", noOfNodes);
printList(startPtr);

}

