
Order of Accuracy

1 Terminology

We consider a numerical approximation of an exact value u. The approximation depends on a
small parameter h, which can be for instance the grid size or time step in a numerical method.
We denote the approximation by ũh. The numerical method has order of accuracy p if there is
a number C independent of h such that

|ũh − u| ≤ Chp, (1)

at least for sufficiently small h. Hence, the larger the order of accuracy, the faster the error is
reduced as h decreases. We say that the convergence rate of the method is hp. The number
C typically depends on the exact solution u and possibly on other parameters in the numerical
scheme. What is important is that it does not depend on h.

Often the error ũh −u depends smoothly on h. Then there is an error coefficient D such that

ũh − u = Dhp + O
(

hp+1
)

. (2)

Note that this is not equivalent to (1) since the error may be a non-smooth function of h. We
will get back to this issue in Section 4 below. For now, however, we will assume (2) holds.

Example 1 In numerical differentiation we approximate u = f ′(0) by the forward difference

ũh =
f(h) − f(0)

h
.

After Taylor expansion we get

ũh − u =
f(0) + hf ′(0) + h2

2 f ′′(ξ) − f(0)

h
− f ′(0) =

h

2
f ′′(ξ)

for some ξ ∈ [0, h]. Hence, for sufficiently small h, say 0 < h < 1 we can write as in (1),

|ũh − u| ≤ Ch, C =
1

2
max
ξ∈[0,1]

|f ′′(ξ)|,

where C does not depend on h. (But it does depend on f !) The order of accuracy is therefore one.
Moreover, if f is three times continuously differentiable we can continue the Taylor expansion
one more step to get

ũh − u =
h

2
f ′′(0) +

h2

6
f ′′′(ξ), ξ ∈ [0, h].

We thus get also (2) with D = f ′′(0)/2, provided f is sufficiently smooth.
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Example 2 In piecewise linear interpolation of a function u(x) on equidistant nodes in the
interval [a, b] we let ũh be the piecewise linear interpolant when the distance between nodes is h.
The error can then be bounded as (see Lecture notes 5)

max
a≤x≤b

|ũh(x) − u(x)| ≤ max
a≤ξ≤b

|u′′(ξ)|

8
h2.

If u(x) is two times continuously differentiable, this is thus a second order method. If u is three
times continuously differentiable the error also depends smoothly on h such that maxx |ũh(x) −
u(x)| = Dh2 + O(h3) for some number D.

Example 3 In the trapezoidal rule we approximate the exact integral

u =

∫ b

a
f(x)dx,

by a sum

ũh =
h

2
f(x0) + h

N−1
∑

j=1

f(xj) +
h

2
f(xN ), h =

b − a

N
, xj = a + jh.

For sufficiently smooth functions f(x) this is a second order method and ũh − u = Dh2 + O(h3).

2 Determining the order of accuracy empirically

We are often faced with the problem of how to determine the order of accuracy p given a sequence
of approximations ũh1

, ũh2
, . . . This is can be a good check that a method is correctly implemented

(if p is known) and also a way to get a feeling for the trustworthiness of an approximation ũh

(high p means high trustworthiness). We can either be in the situation that the exact value u is
known, or, more commonly, that u is unknown.

2.1 Known u

If the exact value u is known, it is straightforward to determine the order of accuracy. Then we
can check the sequence

log |ũh − u| = log |Dhp(1 + O(h))| = log |Dhp| + log |1 + O(h)| = log |D| + p log h + O(h),

for h1, h2, . . . and fit it to a linear function of log h to approximate p. A quick way to do this is
to plot |ũh − u| as a function of h in a loglog plot in Matlab and determine the slope of the
line that appears. The standard way to get a precise number for p is to halve the parameter h
and look at the ratio of the errors u − ũh and u − ũh/2,

ũh − u

ũh/2 − u
=

Dhp + O(hp+1)

D(h/2)p + O((h/2)p+1)
=

D + O(h)

D2−p + O(h)
= 2p + O(h).

Hence

log2

(

ũh − u

ũh/2 − u

)

= p + O(h).

Example 4 The exact integral of sin(x) over [0, π] equals two. Computing ũh with the trapezoidal
rule and plotting |ũh − 2| in a loglog plot we get the result shown in Figure 1.
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Figure 1. Error in trapezoidal rule for f(x) = sin(x) as a function of h. The dashed line is h2 as a

function of h which has precisely slope two. It thus indicates the slope for a second order method,

for comparison.

h ũh ũh − ũh/2

ũh−ũh/2

ũh/2−ũh/4

log
2

ũh−ũh/2

ũh/2−ũh/4

π/5 1.933765598092805 -0.049757939416650 4.024930251575880 2.008963782835339

π/10 1.983523537509455 -0.012362435199260 4.006184396966857 2.002228827158397

π/20 1.995885972708715 -0.003085837788350 4.001543117204195 2.000556454557076

π/40 1.998971810497066 -0.000771161948770 4.000385593360853 2.000139066704584

π/80 1.999742972445836 -0.000192771904301 4.000096386716427 2.000034763740606

π/160 1.999935744350136 -0.000048191814813

π/320 1.999983936164949

Table 1. Table of values for the trapezoidal rule for f(x) = sin(x). The last column is the final

approximation of the order of accuracy p.
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2.2 Unknown u

When u is not known there are two main approaches. The first one is to compute a numerical
reference solution with a very small h and then proceed as in the case of a known u. This can
be quite an expensive strategy if ũh is costly to compute. Using the resulting p to gauge the
trustworthiness of ũh is also less relevant when we already have a good reference solution.

The second approach is to look at ratios of differences between ũh computed for different h.
Most commonly we compare solutions where h is halved successively. When p is large this gives
a fairly good approximation of the error ũh − u since

ũh− ũh/2 = Dhp−D(h/2)p +O(hp+1) = Dhp(1−2−p)+O(hp+1) = (ũh−u)(1−2−p)+O(hp+1).

What is more important, however, is that, regardless of p, this difference decays to zero with the
same speed as the actual error ũh − u. Therefore one can do the same trick as when u is known
and consider the ratio of the differences. We get

ũh − ũh/2

ũh/2 − ũh/4
=

Dhp − D(h/2)p + O(hp+1)

D(h/2)p − D(h/4)p + O(hp+1)
=

1 − 2−p + O(h)

2−p − 2−2p + O(h)
= 2p + O(h). (3)

Hence, after computing ũh for h, h/2 and h/4 we can evaluate the expression above and get an
estimate of p, as before

log2

(

ũh − ũh/2

ũh/2 − ũh/4

)

= p + O(h).

Example 5 Consider again Example 4. If the exact integral value was not known we would look
at the values computed by the trapezoidal rule and check the ratios of differences as above. The
result is summarized in Table 1.

3 Asymptotic region

We note that the estimates of p in all the methods above gets better as h → 0 because of the
O(h) term. (The precise value is only given in the limit h → 0.) We say that the method is in
its asymptotic region (or range) of accuracy when h is small enough to give a good estimate of
p — then the O(hp+1) term in (2) is significantly smaller than Dhp. This required size of h can,
however, be quite different for different problems. To verify that we are indeed in the asymptotic
region, it can be valuable to make the estimate of p for several different h and check that we get
approximately the same value. Usually one therefore computes ũh not just for three values of h,
but for a longer sequence, h, h/2, h/4, h/8, h/16, . . . and compares the corresponding ratios,

ũh − ũh/2

ũh/2 − ũh/4
,

ũh/2 − ũh/4

ũh/4 − ũh/8
,

ũh/4 − ũh/8

ũh/8 − ũh/16
, . . .

Similarly, if u is known one considers ũh − u for several decreasing values of h when fitting the
line.

Example 6 If we perform the same experiments as in Example 4 and Example 5 above, but with
f(x) = sin(31x) the constant D will be much bigger, meaning that the asymptotic region is shifted
to smaller h. The results are shown in Figure 2 and Table 2. It is not until h < π/40 ≈ 10−1

that the numbers start to look reasonable. The general size of the error is also much larger than
in Figure 2 because of the bigger D.
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Figure 2. Error in trapezoidal rule for f(x) = sin(31x). The dashed line is h2 which indicates the

slope for a second order method.

h ũh ũh − ũh/2

ũh−ũh/2

ũh/2−ũh/4

log
2

ũh−ũh/2

ũh/2−ũh/4

π/5 1.933765598092808 1.983523537509458 14.784906442999516 3.886053209184444

π/10 -0.049757939416650 0.134158680351247 -0.630173999781565 —

π/20 -0.183916619767896 -0.212891487744257 7.778391902691306 2.959471924644287

π/40 0.028974867976361 -0.027369601635860 4.437830912882666 2.149854700028653

π/80 0.056344469612220 -0.006167337641551 4.096338487974619 2.034334932805155

π/160 0.062511807253771 -0.001505573247830

π/320 0.064017380501601

Table 2. Table of values for the trapezoidal rule for f(x) = sin(31x). The last column is the final

approximation of the order of accuracy p.
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h ũh ũh − ũh/2

ũh−ũh/2

ũh/2−ũh/4

log
2

ũh−ũh/2

ũh/2−ũh/4

0.2 0.302842712474619 0.009289321881345 26.142135623725615 4.708305098603142

0.1 0.293553390593274 0.000355339059327 1.999999999999688 0.999999999999775

0.05 0.293198051533946 0.000177669529664 2.000000000001875 1.000000000001352

0.025 0.293020382004283 0.000088834764832 2.635450714080436 1.398049712285012

0.0125 0.292931547239451 0.000033707617584 12.589489353884787 3.654147861537719

0.00625 0.292897839621867 0.000002677441208

0.003125 0.292895162180659

Table 3. Table of values for the trapezoidal rule for f(x) = |x−α| with α = 1/
√

2. The last column

is the final approximation of the order of accuracy p, which fails for this case.

4 Non-smooth error

So far we have assumed that the error depends smoothly on the parameter h. Then the error
is of the form in (2). This is, however not always the case. The error can, for instance, depend
discontinuously on h, eventhough it is bounded as in (1). The reason for this can be discontinuities
in the method itself (e.g. case switches) or non-smooth functions in the problem (e.g. solutions,
sources, integrands). When the error is non-smooth one cannot check convergence rates by
looking at ratios of differences as in Section 2.2. Other methods must be used.

Example 7 Consider the trapezoidal rule applied to the integral

∫ 1

0
|x − α|dx,

for some value 0 < α < 1. Here the integrand is not smooth at x = α so the standard second
order of accuracy of the trapezoidal rule is not guaranteed. However, since the integrand is linear
away from x = α, the trapezoidal rule is exact everywhere except in the node interval which
contains α. The error there depends crucially on the distance between α and the nearest node.
More precisely, if xj ≤ α < xj+1 and xj+1 − xj = h,

u − ũh =

∫ xj+1

xj

|x − α|dx − h
|xj − α| + |xj+1 − α|

2

=

∫ α

xj

(α − x)dx +

∫ xj+1

α
(x − α)dx − h

xj+1 − xj

2
= β(β − 1)

h2

2
,

where β = β(h) = (α−xj)/h, i.e. the fractional part of α/h, which is a discontinuous function of
h. The method is still second order accurate since |β(h)| ≤ 1 and (1) therefore holds with C = 1/8.
However, the results presented in Figure 3 and Table 3 clearly shows the non-smoothness of the
error and the failure of the ratios of the differences to predict the order of convergence.
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Figure 3. Error in trapezoidal rule for f(x) = |x−α| with α = 1/
√

2. The dashed line is h2 which

indicates the slope for a second order method.
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