
11/5/2013

1

Mobila appliaktioner och
trådlösa nät,
HI1033,
HT 2012

Today:
- Challengers with mobile

services
- Platforms
- Android

What is a Mobile Service?

11/5/2013

2

Mobile devices

Pico Pocket Palm Pad Lap Desk

Sensor Mobile PDA E-reader Laptop PC

Smartphone Net-book

Tablet

Smartphone vs Feature phone

• Smartphone - “A handheld computer integrated within a mobile telephone”

• Smartphones run complete operating system software providing a platform for
application developers

• Common features (italics: usually not on a feature phone)
- Play media
- Connect to internet
- Touch screen
- Hard/Soft keyboard
- Run third party software (e.g. J2ME or “apps”)
- Run third party software written in a native language
- Additional devices like WiFi, GPS, accelerometer, …
- Access to hardware

11/5/2013

3

Market

Market

Computer Sweden, februari 2012

11/5/2013

4

Some platforms

• Symbian OS (derived from EPOC). API: C++.
Open source, today maintained by Nokia (no new models after 2013)

• Java Micro Edition: Cross platform; runs on a virtual machine on top of other OS.
Designed for embedded systems. Down-scaled Java API.

• iPhone and iPad running on iOS (derived from Mac OS X, Unix-like).
API: Objective C.

• Android. Linux kernel + Dalvik Virtual Machine running applications.
API: Java dialect.
Open source, maintained by Open Handset Alliance

• Windows Phone - operating system with 3rd party and Microsoft services.
API: C#, C++, Visual Basic

Smartphone platforms , 2013

Source: http://www.millennialmedia.com/mobile-intelligence/mobile-mix/

11/5/2013

5

Market; App Stores

• Revolution in distribution of mobile applications.

• Applications available for download “over the air” (June 2011)
- App Store: 400 000 (from approximately 30 000 developers)
- Google Play (former Android Market): 400 000
- Windows Phone Marketplace: > 20 000
- BlackBerry AppWorld: > 30 000

• App Store 2009:
Every app store user spends an average of €4.37 every month.
There is over 58 million app store users.

Typical Smartphone specs (as of Jan 2013)

iPhone 5 Samsung
Galaxy S III

Typical PC

Mass storage 16-64 GB 16-64 GB
(microSD, up
to 64 GB)

1 TB

RAM 1 GB 1 GB 8-16 GB

Processor Dual-core
1.2 GHz

Quad-core
Cortex-A9
1.4 GHz

3-3.5 GHz*

Battery Stand
by/Talk

300 hours/420
minutes

220 hours/480
minutes

-

11/5/2013

6

Expect this when developing software for limited
devices (such as smartphones)

• Limited memory capacity and processor speed
Limited battery capacity

• Network: High latency, low speeds, possibly interrupted
Communication (might) be associated with a cost!

• Small screens, of different sizes and different densities

• Application might get interrupted at any time!

• Hardware-imposed design considerations
Fragmentation of platforms

• Design with this in mind:
Be efficient and be responsive

What’s consuming memory, processor resources
and battery capacity?

• Memory
- Unnecessary allocation of objects
- Inefficient data structures
- Size of application code(!)
- Multiple processes

• Processor recources
- Inefficient algorithms
- Garbage Collection(!)
- Multiple processes and threads
- Rendering of GUI
- Unnessecary polling

• Battery
- Processor working
- Network communication, especially when using WiFi

11/5/2013

7

Mobile Internet Services

Telecom

• GSM, GPRS, EDGE, 3G and 4G

• Network and Services is often connected

Datacom

• Local IEEE 802.11 networks (WiFi)

• Network and Services is separated

Challenges with mobile data

• Low bandwidth, Frequency vs. Bandwidth

• GSM, GPRS, EDGE, 3G/4G, WLAN, LAN

• Wireless connection using different networks

• Datacom vs. Telecom - Best effort vs. Quality of Service

• Cost and distance

• Push vs. Pull

• Question regarding benefit, design and standards

11/5/2013

8

Java Micro Edition

• In the middle of the 90s OAK was developed (Java predecessor)
1999 Palm included KVM (Kilobyte Virtual Machine)

• Supposed to work on:
- Feature phones and PDA
- set-top boxes, TV
and other embedded
devices
- smart cards

CLDC and CDC

• Two different Java ME configurations:

• CLDC (Connected Limited Device Configuration) Focus on the most limited
devices

• CDC (Connected Device Configuration) Devices that almost handle a
complete Java environment

• Why:

• One common ground for similar devices

• Keep “core” API’s between different devices

• Define requirements on virtual machines

11/5/2013

9

Java Micro Edition

• There are billions of Java ME enabled mobile phones and PDAs

• Java ME might become an old technology, as it is not used on any of today's
newest mobile platforms;
e.g. iPhone, Android, Windows Phone 7, BlackBerry's new QNX

• http://www.oracle.com/technetwork/java/javame/overview/index.html

At last…

• Android is: A mobile device platform including
an OS based on the Linux kernel, middleware
and key applications

• Designed to support many different hardware devices

• Applications run on the Dalvik Virtual Machine

• An extensive API, including most Java SE classes, for 3rd party application
development

• Available under a free software / open source license (no license cost)
Standard maintained by Open Handset Alliance, a consortium including
Texas Instruments, Google, HTC, Intel, Motorola, SonyEricsson, Samsung, ...

11/5/2013

10

The Android Software Stack

The Dalvik VM

• Every Android application runs in its own process, with its own instance of the Dalvik
virtual machine.

• And, yes, Dalvik is compact and efficient - a device can run multiple VMs in parallel.

• The Dalvik VM executes files in the Dalvik Executable (.dex) format which is
optimized for minimal memory footprint

• JIT, Just-In-Time compilation enhance performance (since Android 2.2)

• Android launches a process when any of the application's code needs to be
executed (if not already running).

• The process is shut down when it's no longer needed and system resources are
required by other applications – unpredictable!

11/5/2013

11

Android applications

• Android applications don't have a single entry point (no main method)
Instead: The application consists of one or more essential components which
the system can instantiate and run as needed

• Activities holding View components and references to the model; also entry point for
user actions

• Services doesn't have a visual user interface, but rather runs tasks in the
background

• Broadcast receivers receive and react to broadcast announcements, e.g. battery is
low, e-mail received, …

• Content providers makes a specific set of the application's data available to other
applications

Android applications, Activities

• When the first of an application's components needs to be run, Android starts
a Linux process for it with a single thread of execution.
By default, all components of the application run in that process and thread.

An activity has essentially three states:

• active or running when it is in the foreground

• paused if it has lost focus but is still visible to the user

• stopped if it is completely obscured by another activity

11/5/2013

12

Android applications, Activities

• A paused or stopped activity retains all state and member information,
however…

• …the system may kill the process running the activity from memory when
memory is needed elsewhere

• As an activity transitions from state to state, it is notified of the change by calls
to the following protected methods:

• void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()
void onPause()
void onStop()
void onDestroy()

Activity lifecycle

process is ”killable”

11/5/2013

13

Saving Activity (UI) state

Android applications, Activities

package se.kth.hello;

import android.app.Activity;
import . . .;

public class HelloAndroid extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
TextView tv = new TextView(this);
tv.setText("Hello, Android");
setContentView(tv);

}
}

11/5/2013

14

Preferable: Layout defined in layout/main.xml

<?xml version="1.0" encoding="utf‐8"?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical" >

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello, Android" />

</LinearLayout>

Cont: Load/inflate layout in Actvivity.onCreate

package se.kth.hello;

import android.app.Activity;
import . . .;

public class HelloAndroid extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);
TextView tv = (TextView) this.findViewById(R.id.textView);
tv.setText("Hello, Android");

}
}

11/5/2013

15

Android from the perspective of the developer

• High level Java APIs for accessing hardware such as camera, GPS,
accelerometer – same interface for different devices

• Native and 3rd party applications are treated equal. You may
- replace native applications
- access the same underlying data and hardware
- use components of native applications

• Reuse of application components (Activities) in other applications possible

• Support for background services

• WebKit, persistent storage using SQLite, OpenGL, …

Android from the perspective of the developer

APIs including

• WiFi hardware access. GSM and 3G for telephony or data transfer

• GPS

• Bluetooth

• HTML 5 WebKit-based browser

• Hardware accelerated graphics (if possible) including OpenGL

• And more…

11/5/2013

16

Some ”Designing For Performance” guide lines

• Memory management
- Avoid creating unnessecary objects
- When concatenating text in a loop – use a StringBuffer instead of Strings

• Minimize (virtual) method calls
- Avoid internal use of getters and setters
- Declare methods that don’t access member fields as ”static”

• Use the ”for-each” loop except for arrays and ArrayLists

• Know and use the API-libraries – they are probably more efficient than your
custom code (e.g. animations)

• Use events +callbacks methods instead of polling for data

Android – where to go from here?

• This is where you find it all:
http://developer.android.com/index.html

• More on developing for performance:
Meier, pp 38-47
http://developer.android.com/guide/practices/design/performance.html

