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Preface

Many people have contributed to this material in nonlinear control. Originally, it was developed by Bo Bern-
hardsson, Karl Henrik Johansson, and Mikael Johansson. Later contributions have been added by Henning
Schmidt, Krister Jacobsson, Bo Wahlberg, Elling Jacobsen, Torbjörn Nordling, Per Hägg and Farhad Farokhi.
Exercises have also shamelessly been borrowed (stolen) from other sources, mainly from Karl Johan Åström’s
compendium in Nonlinear Control and Khalil’s book Nonlinear Systems.

Per Hägg and Elling W. Jacobsen, September 2012
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Chapter 1

Homeworks

1.1 Report Requirements

Your homework reports should be handed-in as a single PDF file containing all the typed answers, figures,
tables, and etc. You can prepare this document using both Microsoft Word R© or LATEX. However, there is a set
of requirements that your homework should satisfy in order to get considered and subsequently, approved. In
what follows, the homework requirements are specified.

In your report, you should first describe the problem in your own words and break it down into subproblems,
unless the problem was already broken down into subproblems in the description of the homework. In each
subproblem you should define a set of questions or tasks which gradually lead you to a solution of the overall
problem. The problem should be described in detail, so that the reader can understand it without reading the
description of the homework. Then, solve the subproblems in succession and give the solution to the overall
problem at the end, followed by a sentence or two about what you learned from solving the problem. You should
lead the reader through a detailed solution where you motivate every step, state every theorem, and verify that
the assumptions are fulfilled. The presentation should be detailed yet clear and concise. You should provide
a reference (including the page number) for every theorem and result that you are using [2]. Any engineering
student with a bachelor’s degree should be able to understand and reproduce the results based on your report
alone. You may not copy-and-paste any text, theorem, or figure except the figures used in the description of the
homework. Only include figures and tables if they fosters the understanding of the solution. Each figure and
table should include a caption, and all the figures and tables should be associated with a reference in the text
and placed at the end of your report. Each equation should only be written once and referred to by reference
later when needed. Equations that you do not refer to later may be left unlabeled. You are not allowed to have
any appendix nor attach any Matlab or other code.

You report (excluding the figures and tables) should not be shorter than two pages and longer than four
pages. The reports should contain the names of the students (who have collaborated as a group to solve the
problems and write the report) and their email addresses. The solutions may not be copy-pasted from other
sources such as textbooks, internet webpages, or other groups report. You should properly cite all the theorems,
texts, or results that you use when creating the report. Plagiarism (i.e., the act of copying someone else ideas,
text, or results in any form while presenting it as your own work, particularly without permission1) will be
reported to the KTH Disciplinary Board.

Finally, note that deadlines listed on the course page are hard. We will not accept any delays in handing in
reports or reviews.

1.1.1 Writing your report using Microsoft Word R©

You should write your report as a double column document. In Microsoft Word R© 2010 release (which I would
only refer during this description), you can change the number of columns under the page layout tab. You

1http://en.wiktionary.org/wiki/plagiarism
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Homework 1 in EL2620 Nonlinear Control

First name1 Last name1

person number

email

First name2 Last name2

person number

email

September 22, 2009

Problem

Describe the problem in your own words and break
it down into subproblems, unless the problem was
already broken down into subproblems in the de-
scription of the homework. In each subproblem you
should define a set of questions or tasks which grad-
ually lead you to a solution of the overall problem.
The problem should be described in detail, so that
the reader can understand it without reading the
description of the homework. For an example, see
Problem 1.

Problem 1 – Behavior of a non-

linear system

Study the behavior of the system

dx

dt
= y (1a)

dy

dt
= −2x− 2y − 4x2 (1b)

with regard to its initial value and assess if the sys-
tem is globally asymptotically stable.

We have chosen a solution strategy based on the

Figure 1.1: The homework report title page.

should use A4 paper size to write your report (which is the default choice). The top, right, left, and bottom
margins should not be less than 2.5 cm (which is again the default choice). Similarly, you can change the
margin specifications under the page layout tab. We strongly suggest “Times New Roman” as the document
font. However, in case you are missing it in your font library, we suggest you use another standard font; e.g.,
Arial or Courier New. Following this recommendation, you guarantee that we can open your document without
any problem and read the contents. The preferred font size for the text is 11 pt. However, you can certainly
use larger (or smaller) font sizes for the headings (or footnotes). Finally, make sure that the first page of the
report contains the names of the students (who have collaborated as a group to solve the problems and write the
report) and their email addresses. We strongly suggest you follow the template in Figure 1.1 for creating the
first page of your report. A template can also be found at the course homepage.

1.1.2 Writing your report using LATEX

LATEX is a document preparation system. Two major advantage of LATEX over commonly used WYSIWYG (what
you see is what you get) word processors like Microsoft Word, http://office.microsoft.com/word/,
is that it allows you to enter mathematical equations very fast as code and that the layout is separated from the
text. It is commonly used in Engineering disciplines, in particular for writing technical reports and scientific
articles, so we hope that you will enjoy using LATEX. You should use LATEX to prepare your homework reports.
Moreover, you should follow the report template, which can be downloaded from the course page (both as a
PDF and as a ZIP file containing all source files for compiling the PDF).

We recommend those of you that are not familiar with LATEX to see [1] for an introduction. Typically the
fastest way to find help on LATEX is to search on Google, for example latex figure position. Most TEX
related software and material can be found in the TEXUsers Group, http://www.tug.org/. Many differ-
ent TEX distributions exists, but we recommend Windows users to install MikTeX http://miktex.org/,
Unix users to install TeX Live http://www.tug.org/texlive/ and Mac users to install MacTeX
http://www.tug.org/mactex/. When preparing a document using LATEX then you write your text in a
tex file, i.e. a normal text file, which you then compile using pdflatex or latex. The former will directly
produce a PDF, while the later produces a DVI, which you then convert to PostScript using dvips, which then
is converted to a PDF using ps2pdf. Most people prefer to use a text editor that supports highlighting of LATEX
commands and press a button compilation, like Emacs http://www.gnu.org/software/emacs/ (Unix,
Windows, Mac), WinEdt http://www.winedt.com/ (Windows), TextPad http://www.textpad.com/

8

http://office.microsoft.com/word/
http://www.tug.org/
http://miktex.org/
http://www.tug.org/texlive/
http://www.tug.org/mactex/
http://www.gnu.org/software/emacs/
http://www.winedt.com/
http://www.textpad.com/


(Windows), TeXShop http://www.uoregon.edu/~koch/texshop/ (Mac), but you may start by us-
ing built-in programs like Notepad (Windows), pico (Unix), TextEdit (Mac). If you have trouble, please read
the help files and documents coming with the software, search on the Internet, ask your course mates and read
LATEX books.

A short getting you started list:

1. Install a TEX distribution.

2. Download and unzip the report template.

3. Open report_template.tex using a built-in text editor.

4. Produce a PDF by issuing the command pdflatex report_template.tex at the command prompt
(Windows) or in the terminal (Unix, Mac) in the directory where you unzipped the report template. Do
it three times in a row to get the references correct. This compiles the report template and creates the
report_template.log, report_template.aux and report_template.pdf files in the same directory. Open the
PDF and verify that it is identical to the one on the course page.

5. Start writing you report by changing in the report template.

Including vector graphics from Matlab

A bitmap image, e.g. JPEG, TIFF or PNG, has a finite resolution, since the image consists of a limited number
of pixels. Vector graphics, e.g. EPS and PDF, on the contrary consists of objects placed relatively to each
other, which in practice means infinite resolution. Vector graphics can therefore be scaled without any quality
problems, while a bitmap typically becomes blurred. You should therefore always use vector graphics when
possible. Note that vector graphics are containers of objects and it is therefore possible to place a bitmap image
as one of the objects, but you should never do this, since it will lead to problems when scaling the figure.

The current pdflatex compiler can include figures in PDF (Portable Document Format), JPEG (Joint
Photographic Experts Group), PNG (Portable Network Graphics) and MetaPost, while the latex compiler
only can include EPS (Encapsulated PostScript). Matlab figures (http://www.mathworks.com) con-
sists of vector graphics, unless you load a bitmap image, so we strongly recommend that you save them
as EPS or PDF. You need to set the paper size equal to the figure size or you will typically end up with a
small figure centered on a large paper. The paper size 15 × 10 centimeters is set by issuing the command
set(gcf, ’PaperUnits’, ’centimeters’, ’PaperSize’, [15 10], ’PaperPosition’,

[0 0 15 10]);, see Matlab_code_for_stepresponse_figure.m, which is included in the ZIP file containing
the report template. The paper size, however, only matters for the PDF, since every EPS contains a Bounding-
Box that is used by LATEX to define the size of the figure. A simple way to avoid setting the paper size is therefore
to save the Matlab figure as an EPS and then convert it to a PDF using epstopdf. Matlab figures can either
be saved by clicking on File and selecting Save As. . . or by issuing the command print -dpdf -noui

-painters FileName to save as a PDF or print -depsc2 -noui -painters -tiff FileName

to save as an EPS. Note the option -noui that removes any user interface control objects from the figure.

1.1.3 Work in groups of two

You should do the homeworks in pairs (more than two students per group will not be accepted). If more than
one student has done homework 1 alone, then a partner will be designated to those who have done it on their
own.

1.1.4 Grading

Every subproblem is graded as either 1 or 0 points. One point is given if at least 95% of the solution is
correct. To reach the required 75% correct you thus need 4 out of 5 points per homework. After checking your
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Cover and grading guide for homework ____ in EL2620 Nonlinear Control 
 

Fill in both name, personal number and email. 

 
Author 1: ------------------------------------------------------------------------------------------------------------------ 

Author 2: ------------------------------------------------------------------------------------------------------------------ 

 

Grading of report: Teaching assistant fill this 

 Pass Fail 

Length of report (excluding this cover, figures and tables) ( ) □  
 

( ) □ 

Report is typed Yes □  
 

No □ 

Title and author names given Yes  □  
 

No □ 

Problem divided into well specified subproblems Yes □ Accept □ No □ 

Problem understandable without checking other sources Yes □  
 

No □ 

Solutions exist (list missing solutions in the review statement) Yes □ >75% □ <75% □ 

Solutions are correct (clearly mark all errors using blue ink) Yes □ >75% □ <75% □ 

Solutions are detailed yet clear and concise Yes □ Accept □ No □ 

Solutions understandable without checking other sources Yes □  
 

No □ 

Solutions can be reproduced based on report Yes □  
 

No □ 

All theorems/assumptions stated and fulfilled/verified Yes □ Accept □ No □ 

Structure/language is consistent and easy to follow Yes  □ Accept □ No □ 

Figures/tables are clear and easy to understand Yes  □ Accept □ No □ 

Every figure/table is referred to in the text and has a caption Yes □  
 

No □ 

Appendix, Matlab or other code included No □  
 

Yes □ 

Text, theorems or solutions copy-pasted or plagiarism No □  
 

Yes □ 

 
If any of the fail boxes is marked then you need to correct all errors and implement all improvements suggested by the reviewer or motivate 
why you have not implemented a suggestion. You should then mark all changes in a distinguishable color (e.g., red or green) and hand it in. 
Plagiarism will be reported to the KTH Disiplinary Board. 
 

Final grade (teaching assistant fill this): 
 

Attempt 1 Pass □ Fail □ 

Attempt 2 Pass □ Fail □ 

 

Figure 1.2: Cover and grading guide for the homeworks.

homework, we will provide a cover (see Figure 1.2) with a set of formal requirements. You need to get a pass
on each of the formal requirements listed on the cover and grading guide in order to pass the homework. If any
of the fail boxes is marked then you need to correct all errors and implement all improvements suggested by the
reviewers or motivate why you have not implemented a suggestion. You should mark all the changes in your
PDF file (with a color that is easy to distinguish from the rest of the text; e.g., red, green, etc) and then, hand in
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within two weeks from the day the graded homeworks were available.

1.1.5 References

[1] Tobias Oetiker, Hubert Partl, Irene Hyna, and Elisabeth Schlegl. The Not So Short Introduction to LATEX 2ε.
Oetiker, OETIKER+PARTNER AG, Aarweg 15, 4600 Olten, Switzerland, 2008.
http://www.ctan.org/info/lshort/.
[2] Hassan K Khalil. Nonlinear systems. Prentice Hall, Upper Saddle river, 3. edition, 2002. ISBN 0-13-
067389-7.

11

http://www.ctan.org/info/lshort/


1.2 Homework 1

Suppose that there is a grassy island supporting populations of two species x and y. If the populations are
large then it is reasonable to let the normalized populations be continuous functions of time (so that x = 1
might represent a population of 100 000 species). We propose the following simple model of the change in
population:

ẋ(t) = x(t)(a+ bx(t) + cy(t))

ẏ(t) = y(t)(d+ ex(t) + fy(t)),
(1.1)

where x and y are non-negative functions and a, b, . . . , f are constants. Let us start with discussing the model
heuristically to gain some insight. Consider the first equation when y = 0: ẋ = x(a + bx). If the species
x preys on y then the coefficient a must be non-positive (a ≤ 0), since if y = 0 there is no available food
so the population should die of starvation. If x instead eats grass then a > 0, so the population grows if the
initial population is small. The coefficient b enables a non-zero equilibrium for the population of species x in
the absence of the second species. We have b < 0 since the island is finite so large populations suffer from
overcrowding. The coefficient c describes the effect of y on x. If c > 0 then the population growth increases
(for example, if x feeds upon y), while if c < 0 then the population growth decreases (for example, if x and y
compete for the same resource). Similar interpretations hold for d, e, and f .

1. [1p] Depending on the sign of c and e there are four different population models. Continue the discussion
above and label these four models as

• predator-prey (x predator, y prey),

• prey-predator (x prey, y predator),

• competitive (x and y inhibit each other),

• symbiotic (x and y benefit each other).

2. [1p] Consider the population model (1.1) with a = 3, b = f = −1, and d = 2. Draw the phase portrait2 for
the following four cases

• (c, e) = (−2,−1),

• (c, e) = (−2, 1),

• (c, e) = (2,−1),

• (c, e) = (2, 1).

Determine (analytically) the type of each equilibrium in each case. Interpret your results and comment on
their implications when the model is applied in a real investigation of the dynamics between two species.

3. [1p] Repeat the previous exercise for a = e = 1, b = f = 0, and c = d = −1.

4. [1p] Show that the x- and y-axes are invariant for all values of the parameters in (1.1).3 Why is this a
necessary feature of a population model? Assume a = e = 1, b = f = 0, and c = d = −1 in (1.1) and
show that a periodic orbit exists. (Hint: find a closed and bounded trajectory that is an invariant set and
contains no equilibrium point.4)

5. [1p] Generalize the population model (1.1) to N > 2 species.

2It might be a good idea to first make a sketch by hand and then use pplane in Matlab.
3A set W ⊂ R

n is invariant if z(0) ∈ W implies z(t) ∈ W for all t ≥ 0.
4The Poincaré-Bendixson criterion then ensures that the trajectory is a periodic orbit.
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1.3 Homework 2

The influence of back-lash in a control system will be discussed in this homework. Consider the drive line in a
crane, where torque is generated by an electric motor, transformed through a gearbox, and finally used to lift a
load. A block diagram describing the control of the angular position of the lifting axis θout is shown below to
the left. Here the first block represents the P-controller (K > 0), the second the dynamics in the motor (T > 0),
and the third the back-lash between the gear teeth in the gearbox.

θref

−

e θoutθin
1

s(1 + sT )
K

θin θout

2∆

θin

∆

∆

θout

The back-lash is sketched in the middle above and its characteristic is shown to the right. This back-lash model
gives a relation between the angles θin and θout. Another possibility is to model the back-lash as the relation
between the corresponding angular velocities θ̇in and θ̇out. This model, denoted BL, is given as

θ̇out =

{
θ̇in, in contact

0, otherwise,
(1.2)

where “in contact” corresponds to that |θin − θout| = ∆ and θ̇in (θin − θout) > 0.

1. [1p] Consider the back-lash model (1.2) described as a block:

θ̇in θ̇out
BL

Assume

θ̇in(t) =





1, t ∈ [0, 1]

−1, t ∈ [1, 2]

0, otherwise

is the input to BL (in open-loop). Sketch θin, θout, θ̇in, and θ̇out for θin(0) = 0 and θout(0) = −∆ in a
diagram.

2. [1p] Show that the gain of BL is equal to γ(BL) = 1. Show that BL is passive. Motivate why BL can be
bounded by a sector [k1, k2] = [0, 1].5

5You may argue that BL as defined here is not a memoryless nonlinearity, which is required for the application of the Circle Criterion
in the lecture notes. It is, however, possible to circumvent this problem. If you want to know how, check Theorem (126) on page 361
in Vidyasagar (1993).
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3. [1p] Consider the back-lash model BL in a feedback loop:

θ̇in θ̇outdin

dout

−
BL

G(s)

Here din and dout represent disturbances. Assume that G(s) is an arbitrary transfer function (that is, not
necessarily the one given by the crane control problem discussed previously).

a. Given γ(BL) derived in 2, which constraints are imposed on G(s) by the Small Gain Theorem in
order to have a BIBO stable closed-loop system (from (din, dout) to (θ̇in, θ̇out))?

b. Which constraints are imposed on G(s) by the Passivity Theorem in order to have a BIBO stable
closed-loop system?

c. Which constraints are imposed on G(s) by the Circle Criterion in order to have a BIBO stable closed-
loop system?

4. [1p] For the crane control system the transfer function in 3 is equal to

G(s) =
K

s(1 + sT )
.

Motivate why BIBO stability cannot be concluded from the Small Gain Theorem or the Passivity Theo-
rem. Let T = 1 and determine for which K > 0 the Circle Criterion leads to BIBO stability.

5. [1p] Simulate the crane control system in Simulink. Download the Simulink model hw2.mdl and the
short macro macro.m from the course homepage to your current directory and start Matlab. Open the
Simulink model by running

> hw2

and compare with the block diagrams in this homework. What disturbance is added in hw2? What ∆ is
chosen? Simulate the system with the controller K = 0.25 by running

> K=0.25; macro

Does it seem like the closed-loop system is BIBO stable from din to (θ̇in, θ̇out)? Why cannot the closed-
loop system be BIBO stable from din to (θin, θout)? Try other controller gains (for instance, K = 0.5
and 4). Compare with your conclusions in 4. Compare your results to the case when the back-lash is
neglected.
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1.4 Homework 3

Simulation and control of the pitch angle dynamics of a JAS 39 Gripen is discussed in this homework, but first
we give some background. The dynamics of an airplane is highly nonlinear. The control system is based on
gain scheduling of speed and altitude to compensate for some of the nonlinearities. For the JAS 39 Gripen,
linear models have been obtained for approximately 50 different operating conditions. The models are the
result of extensive research including wind tunnel experiments. A linear controller is designed for each linear
model, and a switching mechanism is used to switch between the different controllers. Many of the parameters
in the models vary considerably within normal operation of the aircraft. Two extreme cases are “heavily loaded
aircraft at low speed” and “unloaded aircraft at high speed”. The case when the velocity of the aircraft is
approximately equal to the speed of sound is also critical, because at higher velocities the aircraft is stable
while for lower it is unstable. The velocity of an aircraft is specified by the Mach number M = v/a, which is
the conventional velocity v normalized by the speed of sound a.

The following sketch of the JAS 39 Gripen illustrate the state variables of the system:

α

θ
δs

δe

Earth frame

The direction in which the aircraft is pointing defines the pitch angle θ. The pitch angle does not necessarily
equal the angle of the velocity direction of the aircraft (indicated by an arrow from the center of mass). The dif-
ference is the angle of attack α. JAS 39 Gripen has two surfaces for controlling the pitch angle: the spoiler and
the elevator. Their corresponding angles are denoted δs and δe, respectively. The state-space model considered
in the homework consists of the seven states

α angle of attack
q = θ̇ pitch rate
θ pitch angle
δe elevator angle
δs spoiler angle
xe internal elevator state
xs internal spoiler state

where the latter two states correspond to dynamics in the rudder servos. The control inputs are

ue elevator command
us spoiler command

We consider a linear state-space model for normal load at M = 0.6 and altitude 1 km. This model has been
released by SAAB Military Aircraft and discussed in a master thesis at Chalmers [1]. The model is given by

ẋ = Ax+Bu,

where
x = (α, q, θ, δe, δs, xe, xs)

T , u = (ue, us)
T .
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Download the Matlab files from the course homepage to your current directory and introduce the state-space
model into the Matlab workspace by running

>> jasdata

1. [1p] Which are the dynamical modes of the JAS 39 Gripen state-space model, i.e., which are the eigenvalues
of A? Is the model stable? Which eigenvalues correspond to the flight dynamics and which correspond
to the rudder dynamics?

The aircraft is controlled by linear state feedback

u(t) = −Lx(t) + (Kf ,Kf )
Tufpilot(t),

where the matrix L is derived using linear quadratic control theory and the scalar Kf is chosen such that
the steady-state gain is correct. The internal elevator and spoiler states are not used in the controllers, so
L16 = L17 = L26 = L27 = 0.6 The feedback stabilizes the angle of attack α and the pitch rate q. The pitch
angle θ is not stabilized (and not used in the controller since L13 = L23 = 0), but the control of this mode is
left for the pilot. The signal ufpilot is the filtered pilot command signal:

ufpilot =
1

Tfs+ 1
upilot.

Write

>> planemodel

to see a Simulink model of the aircraft. Match the blocks in the model with the equations above.

2. [1p] Choose a nominal design for the state feedback by typing

>> design1

Look at the L-matrix. Which states are used in the feedback loop? Which are the eigenvalues ofA−BL?
Why is there an eigenvalue close to the origin?

The pilot may be modeled as a PD-controller with a time delay of 0.3 s. Argue why this is a reasonable
model. Let

upilot = Kp
1 + Tds

1 + Td/Ns
e−0.3s(θref − θ),

where θref corresponds to the desired pitch angle. Set Kp = 0.2, Td = 0.5, and N = 10. Simulate the
closed-loop system including the pilot. Check the magnitudes of the rudder angles (plot(t,x(:,[4
5]))). Why is it important that the rudder angles are not too large?

The PD-controller pilot model can be seen as a rational pilot. In an emergency situation, however, the pilot
may panic and try to compensate the error θref − θ with maximal command signals.7 This behavior may induce
oscillations in the system. They are called pilot induced oscillations (PIO) and got considerable attention after
the crash in Stockholm in 1993. Next we do a simplified analysis illustrating what happened.

6In reality there are no measurements of the rudder angles δe and δs. They are estimated using a Kalman filter.
7Imagine yourself in a balancing act. When you are in control, you can keep the balance using very small motions, but as soon as

you are a little out of control, your movements tends to be very large. This is typical for systems with slow unstable dynamics, which
cannot react fast enough to the control commands signals.
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3. [1p] In order to analyze the PIO mode, we will replace the PD-controller pilot by a relay model. The pilot
then gives maximal joystick commands based on the sign of θ. Such a “relay pilot” can be found in the
Simulink pilot model library; run

>> pilotlib

Plot the Nyquist curve of the linear system from upilot to θ. This can be done by deleting the feedback
path from θ, connecting an input and an output at appropriate places (inputs and outputs are found in the
simulink libraries), saving the system to a new file and using the linmod and nyquist commands.

Change pilot in the plane model by deleting the PD-controller pilot and inserting the “relay pilot”. The
describing function for a relay is

N(A) =
4D

πA

What is D for the “relay pilot”? Use describing function analysis to predict amplitude and frequency of
a possible limit cycle. Simulate the system. How good is the prediction?

As you saw, the amplitude of the PIO is moderate. This is because the flight condition is high speed and high
altitude, and thus not extreme. Let us anyway discuss ways to reduce PIO.

4. [1p] Use design2 to change L and Kf to a faster design. Is the PIO amplitude decreased? Make the
pilot filter faster by reducing the filter time constant to Tf = 0.03 (design3). Is the PIO amplitude
decreased? Discuss the results using the describing function method and thus plot the Nyquist curves
from upilot to θ. Are there any drawbacks with the design that gives smallest PIO amplitude?

5. [1p] Suggest a control strategy for reducing PIO in JAS 39 Gripen, with minimal influence on the pilots
ability to manually control the plane. Analyze the performance of your strategy and compare it to the
previous two designs. It should outperform the previous ones.

Extra [0p] There are no rate limitations on the rudders in the discussed aircraft model. Rate limitations were,
however, part of the problems with the JAS 39 Gripen control system. Introduce rate limitations as in the
article [2], and investigate what happens to the limit cycle. Try to understand the idea of the (patented)
nonlinear filter.
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Chapter 2

Exercises

2.1 Nonlinear Models and Simulation

EXERCISE 1.1

The nonlinear dynamic equation for a pendulum is given by

mlθ̈ = −mg sin θ − klθ̇,

where l is the length of the pendulum, m is the mass of the bob, and θ is the angle subtended by the rod and the
vertical axis through the pivot point, see Figure 1.1.

θ

Figure 2.1: The pendulum in Exercise 1.1

(a) Choose appropriate state variables and write down the state equations.

(b) Find all equilibria of the system.

(c) Linearize the system around the equilibrium points, and determine whether the system equilibria are
stable or not.
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EXERCISE 1.2

We consider a bar rotating, with friction due to viscosity, around a point where a torque is applied. The non
linear dynamic equation of the system is given by:

ml2θ̈ = −mgl sin(θ)− kl2θ̇ + C

where θ is the angle between the bar and the vertical axis,
C is the torque (C > 0),
k is a viscous friction constant,
l is the length of the bar
and m is the mass of the bar.

(a) Choose appropriate state variables and write down the state equations.

(b) Find all equilibria of the system, assuming that C
mlg < 1.

(c) Linearize the system around the equilibrium points and determine the eigenvalues for each equilibrium.

EXERCISE 1.3

r

−
u

ψ(t, y)

y
C(sI −A)−1B

Figure 2.2: The feedback system in Exercise 1.3

Figure 2.2 shows a feedback connection of a linear time-invariant system and a nonlinear time-varying element.
The variables r, u and y are vectors of the same dimension, and ψ(t, y) is a vector-valued function.

(a) Find a state-space model with r as input and y as output.

(b) Rewrite the pendulum model from Exercise 1.1 into the feedback connection form described above.
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EXERCISE 1.4

−

+
sin(·) G(s) y

θ0

θi

1/s

Figure 2.3: The phase-locked loop in Exercise 1.4

A phase-locked loop can be represented by the block diagram of Figure 2.3. Let {A,B,C} be a state-space
representation of the transfer function G(s). Assume that all eigenvalues of A have negative real parts, G(0) 6=
0 and that θi is constant. Let z be the state of the realization {A,B,C}.

(a) Show that

ż = Az +B sin e

ė = −Cz

is a state equation for the closed-loop system.

(b) Find all equilibrium points of the system.

(c) Show that ifG(s) = 1/(τs+1), the closed-loop model coincides with the model of a pendulum equation.

EXERCISE 1.5

The nonlinear dynamic equations for a single-link manipulator, see Figure 1.5, with flexible joints, damping
ignored, is given by

Iq̈1 +MgL sin q1 + k(q1 − q2) = 0

Jq̈2 − k(q1 − q2) = u,

where q1 and q2 are angular positions, I and J are moments of inertia, k is a spring constant, M is the total
mass, L is a distance, and u is a torque input. Choose state variables for this system and write down the state

q1

Figure 2.4: The flexible manipulator in Exercise 1.5

equations.
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EXERCISE 1.6

A synchronous generator connected to an infinite bus can be modeled by

Mδ̈ = P −Dδ̇ − η1Eq sin δ

τĖq = −η2Eq + η3 cos δ + EFD,

where δ is the angle in radians, Eq is voltage, P is mechanical input power, EFD is field voltage (input), D is
damping coefficient, M is inertial coefficient, τ is a time constant, and η1, η2, and η3 are constant parameters.

(a) Using δ, δ̇, and Eq as state variables, find the state equation.

(b) Suppose that τ is relatively large so that Ėq ≈ 0. Show that assuming Eq to be constant reduces the
model to a pendulum equation.

(c) For the simplified model, derived in (b), find all equilibrium points.

EXERCISE 1.7

A Mass-Spring system is shown in Figure 2.5. The displacement, y, from a reference point is given by

Fsp Ff

F

m

y

Figure 2.5: The mass and spring system in Exercise 1.7

mÿ + Ff + Fsp = F (2.1)

where Ff is the friction force, Fsp is the spring force and F is the applied force. In reality both Ff and Fsp

are nonlinear functions of y, however, we will use somewhat idealized relations here. First we assume a linear
spring such that Fsp = ky. Then we assume that the friction force can be divided into two parts, friction
due to viscosity Ffv (the mass moves in air) and dry friction against the surface, Ffd. We further assume that
Ffv = cẏ and

Ffd =





−µkmg ẏ < 0 slipping friction
Fs ẏ = 0 rest friction
µkmg ẏ > 0 slipping friction

a) Assume F = 0, write the resulting state-space equation when

Fsp = ky
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and

Ff = Ffv + Ffd = cẏ + η(y, ẏ)

where

η(y, ẏ) =

{
µkmgsign(ẏ) |ẏ| > 0 slipping friction
−ky ẏ = 0 rest friction

b) Characterize the equilibria.

c) What can we benefit from the idealized computations above?

EXERCISE 1.8

Friction

u
x r

v

x

F

1
s

ΣPID
1

ms

−

Figure 2.6: Control system with friction in Exercise 1.8.

Figure 2.6 shows a block diagram of a mechanical system with friction under PID control. The friction block
is given by

F (v) = F0sign(v)

Let xr = 0 and rewrite the system equations into feedback connection form.

EXERCISE 1.9

Which of the following models of physical systems are nonlinear and why?

1. A motor with a valve. The valve has the characteristic f(u) = u2.

2. An unknown system. The only thing you know is that when you send in a sine wave with a quite high
amplitude the output signal is a sine-like wave with the tops "cut-off".

3. A falling apple. There is no air resistance.

4. A system with the following characteristics:
in: x —> out: y
in: a*x —> out: a*y

5. The distribution function you get after tossing a coin 25 times.

6. The control system for the aircraft JAS 39 Gripen.

7. A modern light-switch.
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EXERCISE 1.10

(a) Consider the scalar nonlinear control system

ẋ = xu (2.2)

where the u = u(x) is a state-feedback control. Determine a condition that ensures that the origin is an
asymptotically stable equilibrium.

(b) Does there exist a linear control law u(x) = kx that ensures that (2.2) is asymptotically stable?

(c) Does there exist an affine control law u(x) = k1x+ k2 that ensures that (2.2) is asymptotically stable?

(d) Show that u(x) = −x2 gives that (2.2) is globally asymptotically stable.

(e) We want to analyze an n-dimensional dynamical system of the form

ẋ(t) = (A+B∆C)x(t) (2.3)

where ∆ is a scalar but unknown constant. The matrices A, B, C are constant and of appropriate
dimension. Show that the differential equation (2.3) can be analyzed as a linear system with a constant
gain ∆ in the feedback loop. Draw an illustrative block diagram.

2.2 Computer exercise: Simulation

EXERCISE 2.1

Consider the pendulum model given in Exercise 1.1.

(a) Make a simulation model of the system in Simulink. Simulate the system from various initial states. Is
the system stable? Is the equilibrium point unique? Explain the physical intuition behind your findings.

(b) Use the function linmod in Matlab to find the linearized models for the equilibrium points. Compare
with the linearizations that you derived in Exercise 1.1.

(c) Use a phase plane tool (such as pptool in ICTools or pplane) to construct the phase plane of the
system. Compare with the results from (a).

EXERCISE 2.2

Consider the model of a motor with a nonlinear valve in Figure 2.7. The valve characteristic is given by
f(x) = x2.

(a) Simulate the system in Figure 2.7 using Simulink. Try different input signals r (both amplitude and
shape).

(b) How is stability related to the input signals?

(c) Switch the nonlinearity to something else (e.g., a saturation). Repeat a and b.
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PSfrag

Σ 1
s

1
(s+1)2

Motor Valve Process

−1

r y

Figure 2.7: Block diagram of system in Exercise 2.2.

EXERCISE 2.3

Simulate the example from the lecture with two tanks, using the models

ḣ = (u− q)/A

q = a
√
2g

√
h,

where h is the liquid level, u is the inflow to the tank, q the outflow, A the cross section area of the tank, a
the area of the outflow and g the acceleration due to gravity, see Figure 2.8. Use a step input flow. Make step

2

h

1

qSum
s

1

Integrator

1/A

Gain

f(u)

Fcn

1

In 1

Out

In

q

h

Subsystem2

In

q

h

Subsystem

1

In

Figure 2.8: The flow system in Exercise 2.3

change in u from u = 0 to u = 1. Make step change from u = 1 to u = 0. Is the process linear? Linearize the
system around h1 = h2 = 0.1. Use A1 = A2 = 3× 10−3, a1 = a2 = 7× 10−6. What are the time constants
of the linearized system?

EXERCISE 2.4

Construct a rate limiter (i.e., a system that limit the rate of change of a signal) by adding one of the nonlinear
models in Simulink to the block in Figure 2.9. Simulate and verify your results.

EXERCISE 2.5

Simulate the Lorentz system using the Differential Equation Editor dee in Matlab where it is provided as a
demo. Change the initial condition of one state by 1%. How does that effect the simulation?
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+ 1
s?

Figure 2.9: Block diagram of system in Exercise 2.4.

2.3 Linearization and Phase-Plane Analysis

EXERCISE 3.1

For each of the following systems, find and classify all equilibrium points.

(a) ẋ1 = x2

ẋ2 = −x1 + x31/6− x2

(b) ẋ1 = −x1 + x2

ẋ2 = 0.1x1 − 2x2 − x21 − 0.1x31

(c) ẋ1 = (1− x1)x1 − 2x1x2/(1 + x1)

ẋ2 = (1− x2/(1 + x1))x2

(d) ẋ1 = x2

ẋ2 = −x1 + x2(1− 3x21 − 2x22)

(e) ẋ1 = −x1 + x2(1 + x1)

ẋ2 = −x1(1 + x1)

(f) ẋ1 = (x1 − x2)(x
2
1 + x22 − 1)

ẋ2 = (x1 + x2)(x
2
1 + x22 − 1)

EXERCISE 3.2

For all positive values of a, b and c, determine the equilibrium points of the system

ẋ1 = ax1 − x1x2

ẋ2 = bx21 − cx2

and determine the type of equilibrium.
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EXERCISE 3.3

For each of the following systems, construct the phase portrait, preferably using a computer program, and
discuss the qualitative behaviour of the system.

(a) ẋ1 = x2

ẋ2 = x1 − 2 tan−1(x1 + x2)

(b) ẋ1 = x2

ẋ2 = −x1 + x2(1− 3x21 − 2x22)

(c) ẋ1 = 2x1 − x1x2

ẋ2 = 2x21 − x2

EXERCISE 3.4

Saturations constitute a severe restriction for stabilization of system. Figure 2.10 shows three phase portraits,
each corresponding to one of the following linear systems under saturated feedback control.

(a) ẋ1 = x2

ẋ2 = x1 + x2 − sat(2x1 + 2x2)

(b) ẋ1 = x2

ẋ2 = −x1 + 2x2 − sat(3x2)

(c) ẋ1 = x2

ẋ2 = −2x1 − 2x2 − sat(−x1 − x2)

Which phase portrait belongs to what system?
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Figure 2.10: Phase portraits for saturated linear systems in Exercise 3.4
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EXERCISE 3.5

The following system

ẋ1 = (u− x1)(1 + x22)

ẋ2 = (x1 − 2x2)(1 + x21)

y = x2

is controlled by the output feedback

u = −Ky

(a) For all values of the gain K, determine the equilibrium points of the closed loop system.

(b) Determine the equilibrium character of the origin for all values of the parameter K. Determine in partic-
ular for what values the equilibrium of the closed loop system is (locally) asymptotically stable.

EXERCISE 3.6

As an application of phase plane analysis, consider the model of a synchronous generator derived in Exercise
1.5c

ẋ1 = x2

ẋ2 =
P

M
− D

M
x2 −

η1
M
Eq sinx1.

Determine all equilibrium points of the system, and determine the type of equilibrium.

EXERCISE 3.7

Linearize

ẋ1 = x2 + x1(1− x21 − x22)

ẋ2 = −x1 + x2(1− x21 − x22)

around the trajectory (x1, x2) = (sin t, cos t).

EXERCISE 3.8

Linearize the ball-on-beam equation

7

5
ẍ− xφ̇2 = g sinφ+

2r

5
φ̈,

around the trajectory
(
φ(t), x(t)

)
=

(
φ0,

5g

7
sin(φ0) ·

t2

2

)
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EXERCISE 3.9

Use a simple trigonometry identity to help find a nominal solution corresponding to u(t) = sin (3t), y(0) =
0, ẏ(0) = 1 for the eqution

ÿ +
4

3
y3(t) = −1

3
u(t).

Linearize the equation around this nominal solution.

EXERCISE 3.10

A regular bicycle is mainly controlled by turning the handle bars.1 Let the tilt sideways of the bicycle be θ
radians and the turning angle of the front wheel be β radians. The tilt of the bike obeys the following nonlinear
differential equation:

θ̈ =
mgℓ

J
sin θ +

mℓV 2
0

bJ
cos θ tanβ +

amℓV0
bJ

· cos θ

cos2 β
u

β̇ = u,

where V0 > 0 is the (constant) velocity of the bicycle, and m, g, ℓ, J , a, and b are other positive constants.
The control u is the angular velocity applied at the handle bars. To gain some understanding of the principal
behavior of the bicycle, we study its linearization. Linearize the tilt equation around the equilibrium point
(θ, β, u) = (0, 0, 0).

Derive the transfer function G(s) from u to θ. Determine the poles and zeros of G(s). Is the bike locally
stable?

EXERCISE 3.11

Consider the spherical pendulum depicted below (similar to the one Professor Calculus uses in Tintin):

x

y

z

φ

θ

1The rider can also change the center of mass, but we will ignore that control actuation here.
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Here θ denotes the angular position of the pendulum with respect to the z-axis and φ denotes the angular
position in the x-y plane. A (normalized) model of the spherical pendulum is given by

θ̈ − φ̇2 sin θ cos θ + sin θ = 0

φ̈ sin θ + 2φ̇θ̇ cos θ = 0

(a) Specify the pendulum dynamics on first-order form

ẋ = f(x)

and give condition on when the first-order form is equivalent to the original equations.

(b) Determine all equilibria for the pendulum system. (You don’t have to determine stability properties.)
[Hint: Consider the original equations.]

(c) Show that (θ(t), φ(t)) = (π/3, t
√
2) is a trajectory of the pendulum system.

(d) Linearize the pendulum system about the trajectory in (c).

2.4 Lyapunov Stability

EXERCISE 4.1

Consider the scalar system

ẋ = ax3

(a) Show that Lyapunov’s linearization method fails to determine stability of the origin.

(b) Use the Lyapunov function

V (x) = x4

to show that the system is stable for a < 0 and unstable for a > 0.

(c) What can you say about the system for a = 0?

EXERCISE 4.2

Consider the pendulum equation

ẋ1 = x2

ẋ2 = −g
l
sinx1 −

k

l
x2.

(a) Assume zero friction, i.e. let k = 0, and show that the origin is stable. (Hint. Show that the energy of the
pendulum is constant along all system trajectories.)

(b) Can the pendulum energy be used to show asymptotic stability for the pendulum with non-zero friction,
k 6= 0? If not, modify the Lyapunov function to show asymptotic stability of the origin.
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EXERCISE 4.3

Consider the system

ẍ+ dẋ3 + kx = 0.

Show that

V (x) =
1

2

(
kx2 + ẋ2

)

is a Lyapunov function. Is the system locally stable, locally asymptotically stable, and globally asymptotically
stable?

EXERCISE 4.4

Consider the linear system

ẋ = Ax =

[
0 −1
1 −1

]
x

(a) Compute the eigenvalues of A and verify that the system is asymptotically stable

(b) From the lectures, we know that an equivalent characterization of stability can be obtained by considering
the Lyapunov equation

ATP + PA = −Q

where Q = QT is any positive definite matrix. The system is asymptotically stable if and only if the
solution P to the Lyapunov equation is positive definite.

(i) Let

P =

[
p11 p12
p12 p22

]

Verify by completing squares that V (x) = xTPx is a positive definite function if and only if

p11 > 0, p11p22 − p212 > 0

(ii) Solve the Lyapunov function with Q as the identity matrix. Is the solution P a positive definite
matrix?

(c) Solve the Lyapunov equation in Matlab.

EXERCISE 4.5

As you know, the system
ẋ(t) = Ax(t), t ≥ 0,

is asymptotically stable if all eigenvalues of A have negative real parts. It might be tempted to conjecture that
the time-varying system

ẋ(t) = A(t)x(t), t ≥ 0, (2.4)

is asymptotically stable if the eigenvalues of A(t) have negative real parts for all t ≥ 0. This is not true.
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(a) Show this by explicitly deriving the solution of

ẋ =

[
−1 e2t

0 −1

]
x, t ≥ 0.

(b) The system (2.4) is however stable if the eigenvalues of A(t) + AT (t) have negative real parts for all
t ≥ 0. Prove this by showing that V = xTx is a Lyapunov function.

EXERCISE 4.6

A student is confronted with the nonlinear differential equation

ẍ+
2x

(1 + x2)2
= 0

and is asked to determine whether or not the equation is stable. The students think “this is an undamped mass-
spring system – the spring is nonlinear with a spring constant of 2/(1+x2)2”. The student re-writes the system
as

ẋ1 = x2

ẋ2 =
−2x1

(1 + x21)
2

and constructs the obvious Lyapunov function

V (x) =

∫ x1

0

2ζ

(1 + ζ2)2
dζ +

1

2
x22.

The student declares, “V is positive definite, because everywhere in IR2, V (x) ≥ 0, and V (x) = 0 only if
x = 0.” The student ascertains that V̇ ≤ 0 everywhere in IR2 and concludes, “the conditions for Lyapunov’s
theorem are satisfied, so the system is globally stable about x = 0”.

(a) Sadly, there is a mistake in the student’s reasoning. What is the mistake?

(b) Perhaps the student has merely made a poor choice of Lyapunov function, and the system really is
globally asymptotically stable. Is there some other Lyapunov function that can be used to show global
stability? Find such a function, or show that no such function exists.

EXERCISE 4.7

Consider the system

ẋ1 = x2 − x71
(
x41 + 2x22 − 10

)

ẋ2 = −x31 − 3x52
(
x41 + 2x22 − 10

) (2.5)

(a) For which values of C is the set
{
x ∈ R2|x41 + 2x22 ≤ C

}
invariant with respect to (2.5)?

(b) Use LaSalle’s invariant set theorem to analyze the behavior of the system. (Hint: Use V (x) = (x41 +
2x22 − 10)2).
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(c) Repeat (a) and (b), but now with the set
{
x ∈ R2|ǫ ≤ x41 + 2x22 ≤ C

}
. What can be said about the

stability of the origin?

EXERCISE 4.8

Consider the system

ẋ1 = x2

ẋ2 = −2x1 − 2x2 − 4x31

Use the function

V (x) = 4x21 + 2x22 + 4x41

to show that

(a) the system is globally stable around the origin.

(b) the origin is globally asymptotically stable.

EXERCISE 4.9

Consider the system

ẋ1 = x2

ẋ2 = x1 − sat(2x1 + x2).

(a) Show that the origin is asymptotically stable.

(b) Show that all trajectories starting in the first quadrant to the right of the curve

x1x2 = c

for sufficiently large c, cannot reach the origin. (Hint: Consider V (x) = x1x2; calculate V̇ (x) and show
that on the curve V (x) = c, the derivative V̇ (x) > 0 when c is sufficiently large.)

(c) Show that the origin is not globally asymptotically stable.

EXERCISE 4.10

In general, it is non-trivial to find a Lyapunov function for a given nonlinear system. Several different methods
have been derived for specific classes of systems. In this exercise, we will investigate the following method,
known as Krasovskii’s method.

Consider systems on the form

ẋ = f(x)

with f(0) = 0. Assume that f(x) is continuously differentiable and that its Jacobian, ∂f/∂x, satisfies

P
∂f

∂x
(x) +

(
∂f

∂x
(x)

)T

P ≤ −I

for all x ∈ IRn, and some matrix P = P T > 0. Then, the origin is globally asymptotically stable with
V (x) = fT (x)Pf(x) as Lyapunov function.

Prove the validity of the method in the following steps.
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(a) Verify that f(x) can be written as

f(x) =

∫ 1

0

∂f

∂x
(σx) · x dσ.

and use this representation to show that the assumptions imply

xTPf(x) + fT (x)Px ≤ −xTx, ∀x ∈ IRn

(b) Show that V (x) = fT (x)Pf(x) is positive definite for all x ∈ IRn.

(c) Show that V (x) is radially unbounded.

(d) Using V (x) as a Lyapunov function candidate, show that the origin is globally asymptotically stable.

2.5 Input-Output Stability

EXERCISE 5.1

The norms used in the definitions of stability need not be the usual Euclidian norm. If the state-space is of finite
dimension n (i.e., the state vector has n components), stability and its type are independent of the choice of
norm (all norms are “equivalent”), although a particular choice of norm may make analysis easier. For n = 2,
draw the unit balls corresponding to the following norms.

(a) ||x||2 = x21 + x22 (Euclidian norm)

(b) ||x||2 = x21 + 5x22

(c) ||x|| = |x1|+ |x2|

(d) ||x|| = sup(|x1|, |x2|)

Recall that a “ball” B(x0, R), of center x0 and radius R, is the set of x such that ||x − x0|| ≤ R, and that the
unit ball is B(0, 1).

EXERCISE 5.2

Compute the norms ‖ · ‖∞ and ‖ · ‖2 for the signals

(a)

y(t) =

{
a sin(t) t > 0
0 t ≤ 0

(b)

y(t) =

{
1
t t > 1
0 t ≤ 1

(c)

y(t) =

{
e−t(1− e−t) t > 0
0 t ≤ 0
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EXERCISE 5.3

Consider the linear system

G(s) =
ω2
0

s2 + 2ζω0s+ ω2
0

.

Compute the gain of ‖G‖ for all ω0 > 0 and ζ > 0.

EXERCISE 5.4

Consider a linear time invariant system G(s) interconnected with a static nonlinearity ψ(y) in the standard
form. Compare the Nyquist, Small Gain, Circle Criterion and Passivity theorem with respect to the following
issues.

(a) What are the restrictions that must be imposed on ψ(y) in order to apply the different stability criteria?

(b) What restrictions must be imposed on the Nyquist curve of the linear system in order to apply the stability
criteria above?

EXERCISE 5.5
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Figure 2.11: Static nonlinearities in Exercise 5.5.

Consider the static nonlinearities shown in Figure 2.11. For each nonlinearity,

(a) determine the minimal sector [α, β],

(b) determine the gain of the nonlinearity,

(c) determine if the nonlinearity is passive.
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EXERCISE 5.6

The Nyquist curve of

G(s) =
4

(s− 1)(s/3 + 1)(s/5 + 1)

is shown in Figure 2.12. Determine a possible stability sector (α, β).

Real Axis

Im
ag

in
ar

y 
A

xi
s

Nyquist Diagrams

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
 

Figure 2.12: The Nyquist-curve in Exercise 5.6

EXERCISE 5.7

The singular values of a matrix A are denoted σi(A).

(a) Use matlab to compute σ(A) for

A =

[
1 10
0 1

]
.

(b) The maximal singular value is defined by

σ1(A) = sup
x

|Ax|
|x| .

Show that σ1(AB) ≤ σ1(A)σ1(B).
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EXERCISE 5.8

In the previous chapter, we have seen how we can use Lyapunov functions to prove stability of systems. In this
exercise, we shall see how another type of auxillary functions, called storage functions, can be used to assess
passivity of a system.

Consider the linear system

ẋ = Ax+Bu

y = Cx (2.6)

with zero initial conditions, x(0) = 0.

(a) Show that if we can find a storage function V (x, u) with the following properties

– V (x, u) is continuously differentiable.

– V (0) = 0 and V (x, u) ≥ 0 for x 6= 0.

– uT y ≥ V̇ (x, u).

then, the system (2.6) is passive.

(b) Show that

V (x) =
1

2
xTPx

is OK as a storage function where

P :

{
ATP + PA = −Q
BTP = C

and P and Q are symmetric positive definite matrices.

EXERCISE 5.9

Let P be the solution to
ATP + PA = −I,

where A is a asymptotically stable matrix. Show that G(s) = BTP (sI − A)−1B is passive. (Hint. Use the
function V (x) = xTPx.)

EXERCISE 5.10

A DC motor is characterized by

θ̇ = ω

ω̇ = −ω + η,

where θ is the shaft angle and η is the input voltage. The dynamic controller

ż = 2(θ − z)− sat(θ − z)

η = z − 2θ

is used to control the shaft position. Use any method you like to prove that θ(t) and ω(t) converge to zero as
t→ ∞.
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EXERCISE 5.11

(a) Let uc(t) be an arbitrary function of time and let H(·) be a passive system. Show that

y(t) = uc(t) ·H(uc(t)u(t))

is passive from u to y.

(b) Show that the following adaptive system is stable

e(t) = G(s)
(
θ(t)− θ0

)
uc(t)

θ̇(t) = −γuc(t)e(t),

if γ > 0 and G(s) is strictly passive.

EXERCISE 5.12

(a) Consider the feedback system below with

G(s) =
∆

s(s+ 1)

and
f(y) = K arctan(y)

−

r y
G(s)

f(·)

For what values of the uncertain (but constant) parameters ∆ > 0 and K > 0 does BIBO stability for the
feedback system follow from the Circle Criterion?

(b) For which values of ∆ > 0 and K > 0 does the direct application of the Small Gain Theorem prove BIBO
stability for the feedback system in (b)? (Hint: Is the Small Gain Theorem applicable?)

EXERCISE 5.13

Consider a second-order differential equation

ẋ = f(x),

where f : R2 → R
2 is a C

1 (continuously differentiable) function such that f(0) = 0.
Determine if the following statements are true or false. You have to motivate your answers to get credits.

The motivation can for example be a short proof, a counter example (Swedish: motexempel), or a reference to
a result in the lecture notes.

38



(a) Suppose the differential equation (5.13) has more than one equilibria, then none of them can be globally
asymptotically stable.

(b) The differential equation (5.13) cannot have a periodic solution.

(c) If the eigenvalues of
∂f

∂x
(0)

are strictly in the left half-plane, then the nonlinear system (5.13) is asymptotically stable.

(d) There exists f such that the differential equation (5.13) have a phase portrait that looks like this:

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) For any initial condition x(0) = x0 6= 0, the solution x(t) of (5.13) cannot reach x = 0 in finite time,
that is, there does not exist 0 < T < ∞ such that x(T ) = 0. [Hint: Since f is C1, both the equations

ẋ = f(x) and ẋ = −f(x) have unique solutions. What about a solution ending (for ẋ = f(x)) and

starting (for ẋ = −f(x)) in x0 = 0?]
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EXERCISE 5.14

We wish to estimate the domain of attraction D of the origin for the system

ẋ1 = −x2
ẋ2 = x1 + (x21 − 1)x2,

see phase portrait below:

single
solution

phase
portrait stop clear

axes
zoom

in
zoom
out

solver
prefs
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−3

−2

−1

0

1

2

3

4

x1

x2

Phase plane

(a) Show that the origin is a locally asymptotically stable equilibrium. Linearize the system at the origin and
determine the system matrix A.

(b) Find a Lyapunov function of the form V (x) = xTPx by solving the Lyapunov equation

PA+ATP = −2I,

for an unknown positive definite symmetric matrix P , where A is the matrix in (a).

(c) We want to find an as large region Π ⊂ R
2 as possible such that for all x ∈ Π,

V̇ =
dV

dx
· dx
dt

< 0.

Show that
V̇ = −2x21 − 2x22 − 2x31x2 + 4x21x

2
2.
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(d) Let
Ωc = {z ∈ R

2 : V (z) ≤ c}.
We want to find c > 0, as large as possible, such that Ωc ⊂ Π, where Π is given in (c). Conclude that
Ωc is an estimate of the domain of attraction D. You may base your argument on the plot below. The
ellipsoids are the boundaries of Ωc for c = 1, 2, . . . , 10. The other curves show the level curve for V̇ = 0.
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EXERCISE 5.15

Figure 2.13: System model used in exercise

The system considered in the following tasks, contains of a linear part G(s) connected with a statical
feedback-loop f(:) as seen in Figure 2.13.

Which statements are true, and which are false ?
If false, then justify why it is so ?

1. The system is BIBO-stable if the small gain theorem shows stability for the system.

2. The system is unstable if Small Gain theorem, Circle Criteria and Passivity theorem are proved not stable.

3. The system is BIBO-stable if the Circle criteria proves BIBO-stability, even if the Small gain theorem,
and Passivity theorem don’t fulfill it’s requrement for BIBO-stability.

4. If G(s) is passive and f(:) is passive, the system is BIBO-stable.

5. For the system to be strictly passive, the nyquist curve for G(iω) has to lie in the R.H.P and not intersect
the ℑ-axis, for all ω.

6. Using the Circle criteria: If the nyquist curve ofG(iω) stays inside the circle defined by the points −1/k1
and −1/k2, the system is stable.
k1 ≤ f(y)

y ≤ k2
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2.6 Describing Function Analysis

EXERCISE 6.1

Show that the describing function for a relay with hysteresis in Figure 2.14 satisfies

− 1

YN (C)
= −πC

4H



(
1−

(
D

C

)2
)1/2

+ i
D

C


 .

D−D

H

−H

πD
4H

πC
4H

− 1
YN (C)

Re

Im

Figure 2.14: The relay with hysteresis in Exercise 6.1.
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EXERCISE 6.2

Match each of the odd, static nonlinearities in Figure 2.15 with one of the describing functions in Figure 2.16.
(Hint. Use the interpretation of the describing function N(A) as “equivalent gain” for sinusoidal inputs with
amplitude A.)
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Figure 2.15: Nonlinearities in Exercise 6.2.
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Figure 2.16: Describing functions in Exercise 6.2.
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EXERCISE 6.3

Compute the describing functions for

(a) the saturation,

(b) the deadzone, and

(c) the piece-wise linear function

in Figure 2.17. (Hint: Use (a) in (b) and (c).)

DDD

−D−D−D

HH

−H−H

2D

α

β

−α

−β

Figure 2.17: The static nonlinearities in Exercise 6.3

EXERCISE 6.4

If the describing function for the static nonlinearity f(x) is YN (C), then show that the describing function for
Df(x/D) equals YN (C/D), where D is a constant.

EXERCISE 6.5

Compute the describing function for a static nonlinearity of the form

f(x) = k1x+ k2x
2 + k3x

3.

How does the term k2x
2 influence the analysis?
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Figure 2.18: Electronic oscillator.
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Figure 2.19: Normalized describing function.

EXERCISE 6.6

Consider the system in Figure 2.18, which is typical of the dynamics of electronic oscillators used in laborato-
ries. Let

G(s) =
−5s

s2 + s+ 25

(a) Assess intuitively the possibility of a limit cycle, by assuming that the system is started at some small
initial state, and notice that the system can neither stay small (because of instability) nor at saturation
values (by applying the final value theorem of linear control).

(b) Use describing function to predict whether the system exhibits a limit cycle, depending on the saturation
levelH . In such cases, determine the frequency and amplitude of the limit cycle. The describing function
of a saturation is plotted in Figure 2.19.

(c) Use the extended Nyquist criterion to assess whether the limit cycle is stable or unstable.

EXERCISE 6.7

Consider a servo motor with transfer function

G(s) =
4

s(s+ 1)(s+ 2)

controlled by a relay with a dead-zone a as shown in Figure 2.20.

(a) Show that the describing function for the relay with dead-zone a is given by

N(A) =

{
0 A < a

4
πA

√
1− a2

A2 A ≥ a
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  0a

−a
1

−1

Figure 2.20: Position servo in Exercise 6.7.

r e u y

−
G(s)

Figure 2.21: An auto-tuning experiment: linear system under relay feedback.

(b) How should the parameter a be choosen so that the describing function method predicts that sustained
oscillations are avoided in the closed loop system?

EXERCISE 6.8

The Ziegler-Nichols frequency response method suggest PID parameters based on a system’s ultimate gain Ku

and ultimate period Tu according to the following table. The method provides a convenient method for tuning

Parameter Value
K 0.6Ku

Ti 0.5Tu
Td 0.125Tu

Table 2.1: Tuning rules for Ziegler-Nichol’s method.

PID controllers, since Ku and Tu can be estimated through simple experiments. Once Ku and Tu have been
determined, the controller parameters are directly given by the formulas above.

(a) Show that the parameters Ku and Tu can be determined from the sustained oscillations that may occur in
the process under relay feedback. Use the describing function method to give a formula for computing
Ku and Tu based on oscillation data. (amplitude A and angular frequency ω of the oscillation). Let the
relay amplitude be D.

Recall that the ultimate gain and ultimate period are defined in the following way. Let G(s) be the
systems transfer function, and ωu be the frequency where the system transfer function has a phase lag of
−180 degrees. Then we have

Tu = 2π/ωu

Ku = 1/|G(iωu)|
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Figure 2.22: Input and output of system under relay feedback.

(b) What parameters would the relay method give for the process

G(s) =
50

s(s+ 1)(s+ 10)

which is simulated in Figure 2.22 with d = 1? Compare what you obtain from analytical computations
(Ku = 0.46, Tu = 1.99)

EXERCISE 6.9

In many cases, it is desirable to limit the high frequency content in a signal. Usually, such filtering is per-
formed using a linear low-pass filter. Unfortunately, this type of filtering introduces phase lags. If the limiter is
positioned within a feedback loop, this phase lag can be harmful for system stability.

r y
τ1s+1
τ2s+1

τ2s+1
τ1s+1

α

k

τ1 > τ2

Figure 2.23: The nonlinear lowpass filter suggested in Exercise 6.9.

Figure 2.23 shows an alternative way of limiting the high frequency content of a signal. The system is
composed of a high pass filter, a saturation, and a lowpass filter. Show that the system can be viewed as a
nonlinear lowpass filter that attenuates high-frequency inputs without introducing a phase lag.
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EXERCISE 6.10

(a) The power output from a cellular phone is an important system variable, since the power consumption should
be kept as low as possible to make the battery last longer. Information from the base station about the received
power is sent back to the transmitting phone and is used to control the power output. A simple model for such
a power control system is as follows:

ẋ(t) = au(t)

u(t) = − sgn y(t− L)

y(t) = bx(t).

Here x is the power output of the cellular phone (normalized around zero) and u is the control signal, which
either increase or decrease the power at a fixed rate a > 0. The measured power y at the base station is
proportional to x with proportional constant b > 0. The measured power is being transmitted back to the
cellular phone after a time delay L > 0.

Draw a diagram illustrating the system. Use describing function analysis to predict amplitude, frequency,
and stability of possible power oscillations.

EXERCISE 6.11

The Clegg integrator was invented by J. C. Clegg in 1958. It is simply an integrator with a state that is set to
zero whenever the input crosses zero. Let e be the input to the Clegg integrator and x the integrator state. Then,
the Clegg integrator can be described by the following two equations:

ẋ(t) = e(t)

x(t+) = 0, if e(t) = 0,

where the plus sign in x(t+) indicates that x is set to zero directly after e becomes zero.

(a) Sketch the output of the Clegg integrator for a sinusoidal input e(t) = A sinωt. Assume that x(0) = 0.

(b) Show that the describing function for the Clegg integrator is

N(A,ω) =
4

πω
− i

ω

(c) The describing function gives (as you know) the amplification and phase shift of a sinusoidal input
e(t) = A sinωt. Draw the Nyquist diagram for the ordinary integrator (G(s) = 1/s) together with the
describing function for the Clegg integrator. Comment on similarities and differences in their gain and
phase characteristics. What is the main advantage of using the Clegg integrator instead of an ordinary
integrator (for example, in a PID controller) and vice versa?
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EXERCISE 6.12

Consider the odd static nonlinearity f below.
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(a) Sketch the describing function for f . You only need to draw an approximate sketch.

(b) Consider a feedback system that consists of a linear system G(s) in negative feedback connection with
f , that is,

y = Gu = −Gf(y).
Based on the describing function method, specify a transfer function G(s) such that the closed-loop
system is likely to have an oscillation.

EXERCISE 6.13

A simple model of a Σ∆-modulator is shown below.

r y
1
s

e−sT

It works as an AD-converter and converts the analog signal r : [0,∞) 7→ R to the digital signal y : [0,∞) 7→
{−1, 1}. The relay block (one-bit quantizer) represents the sign function sgn(·) and e−sT represents a time
delay of T units.

(a) Let r(t) = 0.5 and T = 1. Then the average of y will converge to 0.5. Illustrate this by plotting r and y
as functions of time in steady state.
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(b) Let r(t) = 0 and T = 1. Use describing function analysis to show that the system is likely to have a
(symmetric) periodic solution. Determine an estimate of the period time of the oscillation.

(c) Let r(t) = 0 and T > 0. Show that (for any non-zero initial condition of the integrator) the period time
of the oscillation will be equal to 4T .

(d) Let r(t) = 0 and T = 1 (as in (b)). Suppose that in an implementation the relay is replaced by a
saturation with slope k > 0, that is,

sat(kx) =





1, kx > 1

kx, k|x| ≤ 1

−1, kx < −1

where x denotes the output of the integrator. For which values of k > 0 does describing function analysis
suggest that there will be an oscillation?

2.7 Anti-windup

EXERCISE 7.1

Consider the antiwindup scheme in polynomial form described in the figure together with a process A(s)y =
B(s)u. Put uc = 0. Make a block transformation to write the system in standard feedback form with lower

u1

R

y
−S

uc

∑

T

uc

v u1

Aaw

Aaw− R

y
−S ∑

T

(a) (b)

block P = AR+BS
AAaw

− 1. Use the circle criterion (or passivity) to conclude that the system is globally asymptot-
ically stable if A is stable and the following condition holds:

Re

(
AR+BS

AAaw
(iω)

)
≥ ǫ > 0, ∀ω.
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EXERCISE 7.2

Consider the servo system below

R(s) E(s) Ũ(s) U(s) Y (s)
+

−1

G(s)F (s)

The transfer function of the DC motor is given by

G(s) =
1

s(s+ 0.1)
,

and the output signal of the amplifier is limited. The system is controlled by a PID regulator, given by

F (s) = Kc(1 +
1

Tis
+ Tds)

where Kc = 1, Td = 2 and Ti ∈ [1, 15]. Using the describing function method one can predict autooscillations
if the parameter of the integral part is set to Ti < 10. In this exercise we will study two different modifications of
the PID regulator in order two avoid the autooscillations. These modifications ar such that integrator constants
less than 10 can be used.

(a) PID regulator in series with phase advancing term, i.e.

F (s) = Kc

(
1 +

1

Tis
+ Tds

)
N

s+ b

s+ bN
.

Assume that Kc, Ti, and Td are chosen positive and such that the closed loop system is stable when the
saturation is not present. Determine the values for b and N , such that the describing function method
does not predict autooscillations. (Hint: b = 0.1 is a possible choice.)

(b) A different alternative to avoid autooscillations is to feedback the difference between the calculated
control signal ũ(t) and the saturated control signal u(t) as in the figure below.

R(s) E(s)

Ũ(s) U(s)

Y (s)

+
+

++

−

−1

G(s)F (s)

W (s)

Assume that W (s) = 1/(sTt) and that

F (s) = Kc

(
1 +

1

Tis
+ Tds

)
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where Kc = 0.95, Ti = 3.8, and Td = 1.68. If the saturation is neglected, the closed loop systems poles
are given by the zeros of the characteristic polynomial

(s+ αω0)(s
2 + 2ζω0s+ ω2

0)

where ω0 = 0.5, ζ = 0.7, and α = 2. Determine the value of Tt for which the describing function
method does not predict autooscillations.

(c) What are advantages and drawbacks of the methods in (a) and (b).

EXERCISE 7.3

Rewrite the blockdiagram of a PI controller with antiwindup (Lecture 7 slide 5) on state-space form as in slide
10.

EXERCISE 7.4

Consider a PID controller with anti-windup (see Lecture 7). The following plots illustrate control of an inte-
grator process with four different choices of the tracking time constant Tt. The upper plot shows the desired
set-point (the straight line) together with four curves for the output y (curves with more or less overshoot).
The lower plot shows four curves for the control signal u. Redraw the curves in your solutions and combine
Tt = 0.1, 1, 2, and 3 with the corresponding curves. (Note that y for two of the choices are almost identical.)
Motivate.

0 10 20 30
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0 10 20 30
−0.1

0

0.1
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EXERCISE 7.5

The block diagram shows a control system with anti-windup. The process (as you see) is given by an integrator.

ysp yIP uv

K/Ti

K 1
s

1
s

1/Tt

(a) The three left plots below show set-point experiments for the system without anti-windup (Tt = 1000).
The three right plots show set-point experiments with anti-windup (Tt = Ti). Match the plots with the
six signals indicated in the block-diagram. Also, specify the values of K, Ti, and the saturation level.
(These parameters are the same in both simulations.) Motivate your answers.
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(b) Let ysp = 0. The block diagram can then be described as a linear part v = G(s)u in feedback connection
with a static nonlinear part u = satα(v), where α > 0 is the saturation level from (a). Specify G(s).

(c) Let again ysp = 0. For certain values of Ti and Tt, the linear system in (b) is given by

G(s) = −(K − 1)s+K

s(s+ 1)
.

Use the Circle Criterion to determine for which K > 1 the closed-loop system is BIBO stable (from a
perturbation in u to v).
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2.8 Friction, Backlash and Quantization

EXERCISE 8.1

The following model for friction is described in a recent PhD thesis

dz

dt
= v − |v|

g(v)
z

F = σ0z + σ1(v)
dz

dt
+ Fvv,

where σ0, Fv are positive constants and g(v) and σ1(v) are positive functions of velocity.

(a) What friction force does the model give for constant velocity?

(b) Prove that the map from v to z is passive if z(0) = 0.

(c) Prove that the map from v to F is passive if z(0) = 0 if 0 ≤ σ1(v) ≤ 4σ0g(v)/|v|.

EXERCISE 8.2

Derive the describing function (v input, F output) for

(a) Coulomb friction, F = F0sign (v)

(b) Coulomb + linear viscous friction F = F0sign (v) + Fvv

(c) as in b) but with stiction for v = 0.

EXERCISE 8.3

If v is not directly measurable the adaptive friction compensation scheme in the lectures must be changed.
Consider the following double observer scheme:

F̂ = (zF +KF |v̂|)sign(v̂)

żF = −KF (u− F̂ )sign(v̂)

v̂ = zv +Kvx

żv = −F̂ + u−Kv v̂.

Show that linearisation of the error equations

˙̂ev = v̇ − ˙̂v = gv(ev, eF , v, F )

˙̂eF = Ḟ − ˙̂
F = gF (ev, eF , v, F )

gives Jacobian

A =

[
−Kv −1

−KvKF 0

]
.

Conclude that local error convergence is achieved if Kv > 0 and KF < 0.

EXERCISE 8.4
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Show that the describing function for quantization is given by

N(A) =





0 A < D
2

4D

πA

n∑
i=1

√
1−

(
2i− 1

2A
D

)2
2n−1

2 D < A < 2n+1
2 D

(Hint: Use one of the nonlinearities from lecture 8 and superposition.)

EXERCISE 8.5

Show that a saturation is a passive element.

EXERCISE 8.6

Consider the mass-spring system with dry friction

ÿ + cẏ + ky + η(y, ẏ) = 0

where η is defined as

η(y, ẏ) =





µkmgsign(ẏ) for |ẏ| > 0

−ky for ẏ = 0 and |y| ≤ µsmg/k

−µsmgsign(y) for ẏ = 0 and |y| > µsmg/k

Construct the phase potrait and discuss its qualitative behavior. (Hint: Use piecewise linear analysis.)

EXERCISE 8.7

The accuracy of a crude A/D converter can be improved by adding a high-frequency dither signal before quan-
tization and lowpass filtering the discretized signal, see Figure 2.24 Compute the stationary value y0 of the

A/D filter decim.+

Figure 2.24: A/D converter in Exercise 8.7

output if the input is a constant u0. The dither signal is a triangle wave with zero mean and amplitude D/2
where D is the quantization level.
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EXERCISE 8.8

(a) Write down the equations describing the following system, where the saturation blocks are defined as

sat(u− x) =





−1, u− x ≤ −1

u− x, |u− x| ≤ 1

1, u− x ≥ 1.

yΣu Σ

    

1

s

−1

x

The system is a jump and rate limiter: y is equal to u if u changes slowly. If u makes an abrupt change, then y
converges to u after a while. Conclude this by simply deriving the equations for the system for |u−x| ≤ 1 and
for |u− x| ≥ 1, when u makes a step change.

EXERCISE 8.9

The describing function for backlash is shown below:
N(A) = b1+ia1

A
a1 = −4D

π

(
1− D

A

)

b1 =
A
π

[
π
2 + arcsin

(
1− 2D

A

)
+ 2

(
1− 2D

A

)√
D
A

(
1− D

A

)]

a) Calculate limA→∞− 1
N(A) and explain what the result means.

b) Explain why N(A)=0 when A < D
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2.9 High-gain and Sliding mode

EXERCISE 9.1

In some cases, the main nonlinearity of a system can be isolated to a static nonlinearity on the input. This is,
for example, the case when a linear process is controlled using a actuator with a nonlinear characteristic. A
simple design methodology is then to design a controller C(s) for the linear process and cancel the effect of
the actuator nonlinearity by feeding the computed control through the inverse of the actuator nonlinearity, see
Figure 2.25. Compute the inverse of the following common actuator characteristics

C(s) f−1(·) f(·) G(s)
−

Controller

Figure 2.25: Compensation of input nonlinearity by inversion.

(a) The quadratic (common in valves)

f(v) = v2, v ≥ 0

(b) The piecewise linear characteristic

f(v) =

{
k1v |v| ≤ d

(k1 − k2)d+ k2v |v| > d

Use your result to derive the inverse of the important special case of a dead zone.

(c) A backlash nonlinearity.

EXERCISE 9.2

+

−

K

G

Figure 2.26: System in exercise 9.2

What should K be in order for the closed-loop system(see fig. 2.26) to have low sensitivity towards open-
loop perturbations when G = 500 and the distorsion dG

G = 0.15?
Here, low sensitivity means: dGcl

Gcl
≤ 0.1%
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EXERCISE 9.3

Consider the linear system

ẋ(t) =

(
0 −2
1 −3

)
x(t) +

(
0
1

)
u

y(t) =
(
0 1

)
x(t)

which is controlled by a relay.

(a) Sketch the phase-plane directions in the points.

(x1, x2) = (±2,±ε), (±0.5,±ε)

where ε→ 0.

(b) What is the equivalent control ueq on the switching surface?

EXERCISE 9.4

Consider a linear system

ẋ1 = ax2 + bu

ẋ2 = x1

with nominal parameter values a = 1, b = 1. The system equations were obtained by linearization of a
nonlinear system, which has the consequence that the parameters a and b vary with operating region.

(a) One of the design parameters in the design of a sliding mode controller is the choice of sliding surface.
Which of the following sliding surfaces will result in a stable sliding mode for the above system?

(i) σ(x) = x1 − x2

(ii) σ(x) = x1 + 2x2

(iii) σ(x) = x1

(b) Let the sliding mode be σ(x) = x1 + x2. Construct a sliding mode controller for the system.

(c) How large variations in the parameters a and b can the controller designed in (b) tolerate in order to still
guarantee a stable closed loop system?
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EXERCISE 9.5

We have seen how it in many cases can be of interest to control the system into a set, rather than to the origin.
One example of this is sliding mode control, where the system state is forced into an invariant set, chosen in
such a way that if the state is forced onto this set, the closed loop dynamics are exponentially stable. In this
example, we will use similar ideas to design a controller that “swings” up an inverted pendulum from its stable
equilibrium (hanging downwards) to its upright position.

Let the pendulum dynamics be given by

ẋ1 = x2

ẋ2 = −mgl
Jp

sin(x1)−
ml

Jp
cos(x1)u

(a) Denote the total energy of the pendulum byE and determine the valueE0 corresponding to the pendulum
standing in the upright position.

(b) Investigate whether the control strategy

u = k(E − E0)sign(x2 cos(x1))

forces the value of E towards E0. (Hint. Use a Lyapunov function argument with V (x) = (E(x)−E0)
2

(c) Draw a phase portrait of the system and discuss the qualitative behavior of the closed loop system. In
particular, will the suggested control stabilize the unstable equilibrium point?

EXERCISE 9.6

An uncertain nonlinear system is given by

ẋ = −a sin(x(t)) + u

where a ∈ [1, 2] and x(0) = 0.

(a) Consider the open loop system. Sketch the step response for a = 1 and a = 2.

(b) Now apply a P controller with gain k ≫ a. What is the static gain of the closed system.

(c) What are the benefits/problems with highgain control?

EXERCISE 9.7

A nonlinear process is denoted by P and a model of the process is denoted P̂ . Assume that the nonlinear model
P̂ (u(t)) is described by a linear system in parallel with a nonlinear system, thus, the output is given by

y(t) = P̂ (u(t)) = L(p)u(t) +N(u(t)).

Here, L(p) denotes a linear system and N() denotes a nonlinear system.

(a) Show that the inverse of P̂ can be represented by the block diagram in Figure 2.27.

(b) Draw a block diagram of an Internal Model Controller using the inverse of P̂ as above such that the
desired closed loop system is given by T .
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+ L−1

−N

uy

Figure 2.27: Inversion of parallel system

EXERCISE 9.8

Consider a prey (Swedish: byte) and a predator (rovdjur) population with densities x1 and x2, respectively.
Assume that the predator population is harvested when they are sufficiently many, that is, when x2 > α for
some constant α > 0. Think for instance on rabbits, foxes, and human hunters. The hunters only hunt if the
density of foxes is sufficiently high. For a particular set of populations, if x2 < α the dynamics is given by

ẋ1 = 5x1(1− x1)−
20x1x2
2 + 10x1

ẋ2 =
16x1x2
2 + 10x1

− 6x2
10

and if x2 > α the dynamics is given by

ẋ1 = 5x1(1− x1)−
20x1x2
2 + 10x1

ẋ2 =
16x1x2
2 + 10x1

− 6x2
10

− βx2

where β > 0 is a parameter reflecting harvesting effort. In the following, we assume that α = β = 1.
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A (low quality) phase plane plot in ICTools is shown below.

(a) Derive all equilibria in the region {x ∈ R
2 : x1 ≥ 0, 0 ≤ x2 ≤ 1}. Linearize the system about these

equilibria.

(b) Derive all equilibria in the region {x ∈ R
2 : x1 ≥ 0, x2 > 1}. Linearize the system about these

equilibria.

(c) Show that the population dynamics model can be written as

ẋ = f(x, u)

u = − sgnσ(x).

Determine f and σ.

(d) Derive the sliding mode at x2 = 1 (see the phase plane plot), for example, using the equivalent control
method. Describe what the sliding mode correspond to in physical terms (that is, in behavior of prey,
predator, etc.).
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EXERCISE 9.9

Consider the system
ẋ1 = 2x1 − x2 + u

ẋ2 = x1

Design a sliding mode controller such that the origin can be shown to be globally asymptotically stable.

EXERCISE 9.10

Consider the system
ẋ1 = −2x1 −

x2
1 + x22

+ u

ẋ2 =
x1

1 + x21

(a) Consider the manifold
S = {(x1, x2)|x1 + ax2 = 0}

How will the choice of a affect the dynamics on the sliding manifold.

(b) For the sliding manifold in (a), determine a controller that makes the manifold globally asymptotically
stable.

(c) Give the equivalent control on the sliding manifold.

2.10 Computer Exercises: Sliding Mode, IMC and Gain scheduling

EXERCISE 10.1

Consider concentration control for a fluid that flows through a pipe, with no mixing, and through a tank, with
perfect mixing. A schematic diagram of the process is shown in Figure 2.28(left). The concentration at the inlet
of the pipe is cin. Let the pipe volume be Vd and let the tank volume be Vm. Furthermore, let the flow be q and
let the concentration in the tank at the outlet be c. A mass balance gives

Vm
dc(t)

dt
= q(t)(cin(t− L)− c(t))

where L = Vd/q(t).

(a) Show that for fixed q(t), the system from input cin to output c can be represented by a linear transfer
function

G(s) =
K

sT + 1
e−sL

where L and T depend on q(t).

(b) Use Ziegler-Nichols time response method and your model knowledge from (a) to determine a gain
scheduled PI-controller from the step response in Figure 2.29. For this particular system, Vd = Vm = 1.
Recall that the Ziegler-Nichols step response method relies on the parameters L and a = KL/T defined
in Figure 2.28(right) . (The line is tangent to the point where the step response has maximum slope).

Given these process parameters, the method suggest PID controller gains according to Table 2.2.
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Figure 2.28: Schematic of the concentration control system (left). Parameters in Ziegler-Nichols step response
method (right).

0 2 4 6 8 10

−1

−0.5

0

0.5

1

Time [s]

A
m

pl
itu

de

Step response

Figure 2.29: Experimental step response for q(t) = 1.

(c) Compare, using simulations, the performance of your gain scheduled controller with a controller designed
for fixed q = q0 = 1. Let q vary like sine-wave with amplitude 0.5, frequency 0.01 rad/s and a DC-offset
of 1. The reference can be represented by a square-wave with an amplitude of 0.2 and a frequency of
0.01 Hz.

EXERCISE 10.2

Consider the linear system

G(s) =
1

s2 + s

Controller Kp Ti Td
P 1/a
PI 0.9/a 3L
PID 1.2/a 2L L/2

Table 2.2: PID parameters suggested by Ziegler-Nichols step response method.
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and simulate an on-off control. Hence, let the controller be relay with output ±1. Plot the step response for a
step starting at t = 0 (Simulation is troublesome if r = 0). What happens if there is a measurement disturbance
(a step with amplitude 0.1) appears at t = 20? What about the control signal?

EXERCISE 10.3

Consider the linear system in Exercise 9.4 where the system is given by

ẋ1 = ax2 + bu

ẋ2 = x1

with nominal parameter values a = 1, b = 1. Using the sliding surface σ(x) = x1 + x2 and â = b̂ = 1 we get
the sliding controller

u = −(x1 + x2)− µsign(x1 + x2).

Implement the controller and try different values of a, b and µ. Plot x1 on one axis and x2 on the other. Try
different initial conditions, far away and close to the line x2 = −x1 which is the sliding surface.

Please note that when simulating systems controlled by a sliding mode controller Matlab/Simulink may
have difficulties simulating the system when x1 and x2 approaches zero. In these cases, stop the simulation and
plot what you get instead of waiting too long for the result.

EXERCISE 10.4

Consider the pendulum given by

ẋ1(t) = x2(t)

ẋ2(t) = −a sin(x1(t) + δ)− bx2(t) + cu(t)

where x1 = θ − δ and x2 = θ̇. A sliding surface σ(x) = x1 + x2, gives the sliding mode controller

u = −1

ĉ
(x2 − â sin(x1 + δ)− b̂x2)−

µ

ĉ
sign(x1 + x2).

Simulate the controller using a = 1.5, b = 0.75, c = 0.75 and δ = π
4 . For the controller use â = b̂ = ĉ = µ =

1. Try different values of µ.
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2.11 Gain scheduling and Lyapunov based methods

EXERCISE 11.1

Controlling the air-fuel-ratio (A/F) in a car engine using a linear lambda sensor uses the linear model

y =
k

τs+ 1
e−sT

where k and τ are constants (k = 1 and τ = 70 ms). The time-delay T on the other hand varies depending on
the revolutions per minute (rpm) of the engine.

(a) Calculate an Internal Model Controller (IMC) for a fixed time-delay. The desired closed loop transfer
function is given by

H(s) =
1

(λs+ 1)2
.

Use a first order Padé approximation

e−sT =
1− sT/2

1 + sT/2
,

to represent the time-delay. Hence, the time delay is represented by a right half plane zero and a left half
plane pole.

(b) Computer exercise: Examples of time-delay values are shown in Table 2.3 (in reality we have many
more points) Tune a controller for each time delay, such that there is no overshoot for a step in the

Table 2.3: Time delay as a function of the rpm

rpm 825 2000 6000
T (ms) 300 155 105

reference (try a reference step from 1 to 1.2). What is λ in each case? Check the sensitivity function,
what is the max |S(iω)|? Make a linear interpolation of the λ parameter between rpm 825 and 2000. Try
that controller the for 1200 rpm (the actual time delay is then 215 ms).

EXERCISE 11.2

Consider the system

ẋ = −x+ z2x
2

ż1 = z2

ż2 = u

with x(0) = x0 and z(0) = z0 where z = (z1 z2)
T .

(a) As a first idea we could let z2 → 0 as fast as possible using the controller u = −az. What is the problem
with this approach? (Hint: Check if the system may suffer from finite escape time)
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(b) Consider the more general form of the system

ẋ = f0(x) + yT f(x, z)

ż = Az +Bu

y = Cz

and use the controller

u = Kz − 1

2

∂V

∂x
f(x, z) (2.7)

where V (x) is the Lyapunov function for the system ẋ = f0(x). The matrix K satisfies the positive real
condition

(A+BK)TP + P (A+BK) = −Q
and PB = CT

for some P > 0 and Q ≥ 0.

(c) Study the global asymptotic stability using the Lyapunov function

W (x, z) = V (x) + zTPz.

EXERCISE 11.3

Consider the uncertain system

ẋ1 = x2

ẋ2 = x31 + x32 + (1 + a)u

where a is an unknown constant which satisfy and |a| ≤ 1
2 .

EXERCISE 11.4

Consider the uncertain system

ẋ1 = x2

ẋ2 = (1 + a1)(x
3
1 + x32) + (1 + a2)u

where a1 and a2 are unknown constants which satisfy |a1| ≤ 1 and |a2| ≤ 1
2 .
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EXERCISE 11.5

Consider the system

ẋ1 = x2

ẋ2 = u+ δ(x)

where δ is unknown but we know an estimate of ρ such that |δ(x)| ≤ ρ‖x‖2. Let u = ψ(x) = −x1 − x2 be the
nominal stabilizing controller and

v =

{ −ρ‖x‖2 w
‖w‖2

if ρ‖x‖2‖w‖2 ≥ ǫ

−ρ2‖x‖22wǫ if ρ‖x‖2‖w‖2 < ǫ

where wT = 2xTPB and V (x) = xTPx is a Lyapunov function for the nominal closed loop system.
Show that when δ(x) = 2(x1 + x2) and ρ = 2

√
2 the origin is unstable.

EXERCISE 11.6

Consider the system

ẋ1 = x21 − x31 + x2

ẋ2 = u.

Compute a controller using backstepping to globally stabilize the origin.

EXERCISE 11.7

Consider the system

ẋ1 = x21 − x31 + x2

ẋ2 = x3

ẋ3 = u.

Compute a controller using backstepping to globally stabilize the origin.

EXERCISE 11.8

Consider the system

ẋ1 = −x1 + x21x2

ẋ2 = u

compute a controller to obtain global stabilization using the backstepping approach.
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EXERCISE 11.9

Consider the system

ẋ1 = x1x2

ẋ2 = x1 + u

compute a controller using backstepping to globally stabilize the origin.

EXERCISE 11.10

Consider the system

ẋ1 = x2 + a+ (x1 − a1/3)3

ẋ2 = x1 + u

where a is a constant. Compute a controller using backstepping to globally stabilize the origin.

EXERCISE 11.11

The equations of motion of an m-link robot is described by

M(q)q̈ + C(q, q̇)q̇ + g(q) = u

where q is an m-dimensional vector of generalized coordinates representing joint positions. The control torque
input is represented by u and M(q) is a symmetric inertia matrix which is positive definite ∀q ∈ Rm. The
term C(q, q̇)q̇ accounts for centrifugal and Coriolis forces. The matrix C has the property that Ṁ − sC is a
skew-symmetric matrix ∀q, q̇ ∈ Rm, where Ṁ is the total derivative of M with respect to t. The term g(q),

which accounts for gravity forces, is given by g(q) =
[
∂P (q)
∂q

]T
where P (q) is the total potential energy of the

links due to gravity. We will assume that P (q) is positive definite function of q and g(q) = 0 has an isolated
root at q = 0.

(a) With u = 0 use the total energy

V (q, q̇) =
1

2
q̇TM(q)q̇ + P (q)

as a Lyapunov function candidate to show that the origin (q = 0, q̇ = 0) is stable.

(b) With u = −Kdq̇ where Kd is a positive diagonal matrix, show that the origin is asymptotically stable.

(c) With u = g(q)−Kp(q− q∗)−Kdq̇ where Kp and Kd are positive diagonal matrices. and q∗ is a desired
robot position in Rm, show that the point (q = q∗, q̇ = 0) is an asymptotically stable equilibrium point.
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EXERCISE 11.12

(a) Consider the system
ẋ1 = x2 + f(x1)

ẋ2 = u,

where f(x1) is a C
1 function with f(0) = 0. Show that the coordinate transformation

z1 = x1

z2 = x2 + f(x1),

together with the control law
u = −z1 − 2z2 − z2f

′(z1)

gives an asymptotically stable linear system ż = Az.

(b) Find a state feedback controller k : R2 → R for (11.12) such that the origin is asymptotically stable for the
closed-loop system

ẋ1 = x2 + f(x1)

ẋ2 = k(x).

(You may use your result in (a).) Find a (Lyapunov) function V : R2 → R and use it to prove that x = 0 is a
globally asymptotically stable equilibrium for (11.12).

EXERCISE 11.13

The ball-and-beam system is given by the equations

0 = r̈ + g sin θ + βṙ − rθ̇2

τ = (r2 + 1)θ̈ + 2rṙθ̇ + gr cos θ,

where r is the position of the ball, θ the angle of the beam, τ the torque applied to the beam, g > 0 the gravity
constant, and β > 0 the viscous friction constant.

r

θ

τ

(a) Transform the system into first-order state-space form ẋ = f(x, u), where x = (r, ṙ, θ, θ̇)T and u = τ .

(b) Determine all equilibria of (11.13).

(c) Some of the equilibria in (b) correspond to that the beam is upside-down. Disregard these and linearize
the system about one of the appropriate equilibria.
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(d) Discuss how one can obtain a state feedback control law (r, ṙ, θ, θ̇ are all measurable) that gives a locally
asymptotically stable ball-and-beam system. You don’t have to come up with an explicit solution.

(e) Consider only the first equation of (11.13) and assume that θ = θ̇ = 0. Show that (r, ṙ) = (0, 0) is
globally stable. What about asymptotic stability? (Hint: V = (βr + ṙ)2/2 + ṙ2/2.)

EXERCISE 11.14

Consider the control system

ẋ1 = −x31 + u

ẋ2 = x1

(a) Sketch the phase portrait for u = 0.

(b) Based on the Lyapunov function candidate V (x) = x21 + x22, suggest a control law u = g(x1, x2), such
that the origin is globally asymptotically stable. You need to clearly motivate why the control law of your
choice makes the system globally asymptotically stable.

(c) Derive a globally stabilizing control law u = h(x1, x2) based on exact feedback linearization.

2.12 Feedback linearization

EXERCISE 12.1

Consider a mass with damping and spring described by

ẋ1 = x2

ẋ2 = −φ(x1)− ψ(x2) + u

where x1 denotes the position and x2 denotes the velocity. The force imposed by the spring is given by the
nonlinear function φ(x1) and the damping is described by the nonlinear function ψ(x2). Compute the feedback
such that the overall system is linear with two arbitrary poles.

EXERCISE 12.2

Consider the system

ẋ1 = x21 + x2

ẋ2 = u

y = x1

Determine a feedback control law, exactly linearizing the system.
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EXERCISE 12.3

Consider the system with two water tanks

u

x1

x2

The dynamics are given by

ẋ1 = 1 + u−
√
1 + x1

ẋ2 =
√
1 + x1 −

√
1 + x2

y = x2

(a) Show that the system has a strong relative degree of 2 (r = 2).

(b) Determine the coordinate transformation such that the system can be written as

ż1 = z2

ż2 = α(z) + β(z)u

y = z1

(c) Determine a feedback control law, exactly linearizing the system.

EXERCISE 12.4

Find a feedback law

u = h(x, v)

that renders the closed loop system from the new input, v to the output, y, linear. Is the zero dynamic stable or
unstable?

(a) Consider

ẋ1 = x32

ẋ2 = u

y = x1 + x2
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(b) Consider

ẋ1 = −x22 + u

ẋ2 = u

y = x1

EXERCISE 12.5

Determine a feedback control law
ẋ1 = −x1 + 7x2

ẋ2 = −x2 + cosx1 + u

exactly linearizing the system.

EXERCISE 12.6

Determine a feedback control law

ẋ1 = x3 + 8x2

ẋ2 = −x2 + x3

ẋ3 = −x3 + x41 − x21 + u

y = x1

exactly linearizing the system.

EXERCISE 12.7

An important class of nonlinear systems can be written on the form

ẋ1 = x2

ẋ2 = x3
...

ẋn = f(x) + g(x)u

Assume that the full state x is available for measurement.

(a) Find a feedback

u = h(x, v)

that renders the closed loop system from the new input v to the state linear. What conditions do you have
to impose on f(x) and g(x) in order to make the procedure well posed?
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(b) Apply this procedure to design a feedback for the inverted pendulum

ẋ1 = x2

ẋ2 = a sin(x1) + b cos(x2)u

that makes the closed loop system behave as a linear system with a double pole in s = −1. Is the control
well defined for all x? Can you explain this intuitively?

(c) One drawback with the above procedure is that it is very sensitive to modelling errors. Show that this is
the case by designing a linearizing feedback for the system

ẋ = x2 + u

that makes the closed loop system linear with a pole in −1. Apply the suggested control to the system

ẋ = (1 + ǫ)x2 + u

and show that some solutions are unbounded irrespectively of ǫ 6= 0.

2.13 Optimal Control

EXERCISE 13.1

For a fixed tf > 0, find an optimal control law u∗ that solves

min
u

∫ tf

0
(x(t) + u2(t)) dt

s.t.ẋ(t) = x(t) + u(t) + 1,

x(0) = 0.

EXERCISE 13.2

Find the optimal control function of the control problem

min
u

∫ tf

0
dt

s.t.ẋ1(t) = x2(t),

ẋ2(t) = u(t),

x1(0) = x0, x1(tf ) = 0,

x2(0) = v0, x2(tf ) = 0,

‖u(t)‖ ≤ 1 for all t.
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EXERCISE 13.3

Neglecting air resistance and the curvature of the earth, the launching of a satellite can be described by the
following equations

ẋ1 = x3

ẋ2 = x4

ẋ3 =
F

m
cosu

ẋ4 =
F

m
sinu− g

where (x1, x2) is the coordinate and (x3, x4) the corresponding velocity. The signal u is the controlled angle.
Suppose that φ(x(tf )) is the criterion to be minimized and that ψ(x(tf )) = 0 is the end constraint. Show that
the optimal control signal has the form

tanu∗(t) =
At+B

Ct+D

where A,B,C,D are constants (which you do not have to determine).

EXERCISE 13.4

Suppose more realistically that m and F vary. Let u1 be the control signal in previous exercise and u2(t) =
F (t). Suppose u2 has limitations

0 ≤ u2(t) ≤ umax

Let the mass m = x3(t) vary as
ẋ3 = −γu2

Show that

tanu1 =
λ1
λ4

and u2 =





umax σ < 0
0 σ > 0
⋆ σ = 0,

where ⋆ means that the solution is unknown. Determine equations for λ and σ. (You do not have to solve the
equations).

EXERCISE 13.5

Consider the system {
ẋ1 = x2
ẋ2 = −x1 − x32 + (1 + x1)u

with initial conditions x1(0) = 1, x2(0) = 1 and let the criterion be

min
u:[0,1]→R

∫ 1

0
(ex

2

1 + x22 + u2) dt.

Show that the extremals satisfy

ẋ1 = f1(x1, x2, λ1, λ2)

ẋ2 = f2(x1, x2, λ1, λ2)

λ̇1 = f3(x1, x2, λ1, λ2)

λ̇2 = f4(x1, x2, λ1, λ2)

Determine f1, f2, f3, f4. What conditions must λ1, λ2 satisfy at the end point?
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EXERCISE 13.6

Consider the double integrator

ẋ1 = x2

ẋ2 = u, |u| ≤ 1

with initial value x(0) = x0. We are interested in finding the control that brings the system to rest (x(tf ) = 0)
in minimum time. (You may think of this as a way of designing a controller that reacts quickly to set-point
changes.)

(a) Show that the optimal control is of “bang-bang type” with at most one switch. (In other words, show
that the optimal control is first maximal in one direction for some time, and then possibly changes sign
to become maximal in the other direction for the remaining time)

(b) Show that the control can be expressed as a feedback law

u =

{
umax σ(x) > 0

−umax σ(x) < 0

Derive an explicit formula for the switch function σ(x).

(c) Using a phase plane tool, construct the phase portrait of the closed-loop system under the optimal control.

EXERCISE 13.7

Consider the problem of controlling the double integrator
{
ẋ1 = x2
ẋ2 = u, |u| ≤ 1

from an arbitrary initial condition x(0) to the origin so that the criterion

∫ tf

0
(1 + |u|) dt

is minimized (tf is the first time so that x(t) = 0). Show that all extremals are of the form

u(t) =





−1 0 ≤ t ≤ t1
0 t1 ≤ t ≤ t2
1 t2 ≤ t ≤ tf

or

u(t) =





1 0 ≤ t ≤ t1
0 t1 ≤ t ≤ t2
−1 t2 ≤ t ≤ tf

for some t1, t2 with 0 ≤ t1 ≤ t2 ≤ tf . (Some time interval can thus have length zero.) Assume that the
problem is normal.
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EXERCISE 13.8

Consider the problem of taking the state of the system

ẋ =

(
−5 2
−6 2

)
x+

(
0
1

)
u

from x0 = (0, 0)T to x(tf ) = (1, 1)T in minimum time with |u(t)| ≤ 3. Show that the optimal controller is
either

u(t) =

{
−3 0 ≤ t ≤ t1
+3 t1 ≤ t ≤ tf

or

u(t) =

{
+3 0 ≤ t ≤ t1
−3 t1 ≤ t ≤ tf

for some t1.

EXERCISE 13.9

Show that the minimum-time control of a linear system

ẋ = Ax+Bu, y = Cx, |u| ≤ 1, x(tf ) = 0,

leads to extremals with
u(t) = sign σ(t)

Determine σ(t).

EXERCISE 13.10

What is the conclusion from the maximum principle for the problem

min
∫ 1

0
u dt,

ẋ = u

x(0) = 0

x(1) = 1

EXERCISE 13.11

Consider an optimal heating problem where T is the temperature and P heat effect. Let

Ṫ = P − T

0 ≤ P ≤ Pmax

T (0) = 0, T (1) = 1

and solve min
∫ 1
0 P (t) dt.
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EXERCISE 13.12

In this problem we study the linear quadratic optimal control problem

min
u:[0,tf ]→Rm

1

2

∫ tf

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt

with

ẋ(t) = Ax(t) +Bu(t), x(0) = x0.

Suppose that tf > 0 and x0 are fixed and that the matrices Q = QT and R = RT are positive definite. Then,
the optimal control is given by

u∗(t) = −R−1BTS(t)x(t),

where the matrix S(t) = ST (t) satisfies the differential equation

−Ṡ(t) = ATS(t) + S(t)A− S(t)BR−1BTS(t) +Q,

where S(tf ) = 0n×n is an n× n zero matrix.

(a) Determine the Hamiltonian function H(x, u, λ).

(b) Derive the adjoint equation for the optimal control problem, that is, the differential equation for λ(t)
(including the final condition λ(tf )).

(c) Show that the optimal control can be written as

u∗(t) = −R−1BTλ(t),

where λ is the solution to the adjoint equation in (b). (Hint: Derive the solution to ∂H/∂u = 0.)

(d) Show that (13.12) is the optimal control with S(t) given by (13.12). Do this by setting λ(t) = S(t)x∗(t).
Then derive

λ̇(t) = Ṡ(t)x∗(t) + S(t)ẋ∗(t) = Ṡ(t)x(t) + S(t)[Ax∗(t) +Bu∗(t)]

and use (b) together with (c). You will end up with an equation

−Ṡ(t)x∗(t) = [ATS(t) + S(t)A− S(t)BR−1BTS(t) +Q]x∗(t)

from which you can conclude (13.12).

(e) What is the solution for the case tf = ∞?

(f) Show thatH(x, u, λ) is constant along every optimal trajectory (x∗(t), u∗(t)). (Hint: Derive Ḣ(x∗(t), u∗(t), λ(t))
and use that ∂H

∂u (x
∗(t), u∗(t), λ(t)) = 0 since u∗ minimizes H .)
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EXERCISE 13.13

The double integrator

ÿ = u

should be controlled from (y, ẏ) = (10, 0) to (y, ẏ) = (0, 0) as fast as possible given the constraint |u| ≤ C,
C > 0. Show that the optimal control law is given by

u(t) = C sgn p(t),

where p is a polynomial. Detemine the degree of p. [You do not have to derive p explicitly.]

EXERCISE 13.14

Determine the control law that minimizes

J(u) =

∫ ∞

0

5

2
y2 + 2u2dt

The system is given by

ẋ =

[
0 1
1 −1

]
x+

[
0
1

]
u

y = [1 0]
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2.14 Fuzzy control

EXERCISE 14.1

Consider the inverted pendulum model that we have been using in previous exercises

ẋ1 = x2

ẋ2 = sin(x1) + cos(x1)u

Here, the first state is the pendulum angle and the second state describes the angular velocity. Assume that we
have defined fuzzy sets that describe out notions of the angle and angular velocity being "negative large", "neg-
ative small", "zero", "positive small" and "positive large". The fuzzy sets for the control signal (the acceleration
of the pendulum pivot). The fuzzy rule base can be represented by the table below

NL NS ZE PS PL
NL
NS
ZE ZE
PS
PL

Here the first row corresponds to the proposition "x1 is negative large", the first row corresponds to "x2 is
negative large", etc. The already filled-in entry of the table specifies the rule

IF x1 IS ZERO AND x2 IS ZERO THEN u IS ZERO

(a) Fill in the remaining rules based on your intuition for controlling an inverted pendulum

(b) Implement the controller in Matlab/Simulink and see if your fuzzy controller performs better than the
linear control law

u = −2x1 − 2x2
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Chapter 3

Solutions

3.1 Solutions to Nonlinear Models and Simulation

SOLUTION 1.1

(a) Choose the angular position and velocity as state variables, i.e., let

x1 = θ

x2 = θ̇

We obtain

ẋ1 = x2

ẋ2 = −g
l
sin(x1)−

k

m
x2

(b) By setting the state derivatives to zero, we obtain

0 = x1

0 = −g
l
sin(x1)−

k

m
x2

We find the equilibrium points (x1, x2) = (nπ, 0) with n = 0,±1,±2, . . . . The equilibrium points
correspond to the pendulum hanging down (n even), or the pendulum balancing in the upright position
(n odd). Linearization gives

d

dt
∆x =

(
0 1

− g
l (−1)n − k

m

∆x

)
(3.1)

The linearized system is stable for even n, and unstable for odd n. We can use Lyapunov’s linearization
method to conclude that the pendulum is LAS around the lower equilibrium point, and unstable around
the upper equilibrium point.
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SOLUTION 1.2

1. We can rewrite the equation:

θ̈ = −g
l
sin(θ)− k

m
θ̇ +

C

ml2

Then we choose the angular position and velocity as state variables:

x1 = θ

x2 = θ̇

We obtain:

ẋ1 = x2

ẋ2 = −g
l
sin(x1)−

k

m
x2 +

C

ml2

2. By setting the state derivatives to zero, we obtain:

0 = x2

0 = −g
l
sin(x1)−

k

m
x2 +

C

ml2

So, at the equilibrium points, x1 satisfies:

sin(x1) =
C

mlg

So, all the equilibrium points are:

x1 = arcsin(
C

mlg
) + 2nπ

or − arcsin(
C

mlg
) + (2n+ 1)π

x2 = 0

3. The linearization gives the A matrix:

A =

(
0 1

− g
l cos(x1) − k

m

)

if x1 = arcsin( C
mlg ) + 2nπ then

A =

(
0 1

− g
l

√
1− ( C

mlg )
2 − k

m

)

and its eigenvalues are:

λ = − k

2m
± 1

2

√√√√(
k

m
)2 − 4

g

l

√
1− (

C

mlg
)2

if x1 = − arcsin( C
mlg ) + (2n+ 1)π then

A =

(
0 1

+ g
l

√
1− ( C

mlg )
2 − k

m

)
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and its eigenvalues are:

λ = − k

2m
± 1

2

√√√√(
k

m
)2 + 4

g

l

√
1− (

C

mlg
)2

SOLUTION 1.3

(a) Let

ẋ = Ax+Bu, y = Cx

be a state-space realisation of the linear system. We have

u = r − ψ(t, y) = r − ψ(t, Cx)

and hence

ẋ = Ax−Bψ(t, Cx) +Br, y = Cx

(b) To separate the linear dynamics from the nonlinearities, write the pendulum state equations as

ẋ1 = x2

ẋ2 = − k

m
x2 −

g

l
sin(x1)

and view sin(x1) as an input, generated by a nonlinear feedback from y = x1 (Compare with Figure 2.2).
Introduce the state vector x = (x1, x2)

T , and re-write the equations as

ẋ =

[
0 1
0 −k/m

]
x+

[
0
g/l

]
u (3.2)

y =
[
1 0

]
x (3.3)

u = − sin(y), (3.4)

which is on the requested form.

SOLUTION 1.4

(a) Hint: ė = −y = −Cx.

(b) The equilibrium points are given by

0 = G(0) sin e

from which we obtain

e = ±nπ, n = 0, 1, 2, . . .

(c) For G(s) = 1/(τs+ 1), we take A = −1/τ , B = 1/τ and C = 1. Then

ż = −1

τ
z +

1

τ
sin e

ė = −z
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Now, let x1 = e and x2 = −z, so that

ẋ1 = x2

ẋ2 = −1

τ
x2 −

1

τ
sinx1,

which is the pendulum model.

SOLUTION 1.5

We choose angular positions and velocities as state variables. Letting x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, we
obtain

ẋ1 = x2

ẋ2 = −MgL

I
sinx1 −

k

I
(x1 − x3)

ẋ3 = x4

ẋ4 =
k

J
(x1 − x3) +

1

J
u

SOLUTION 1.6

(a) Let x1 = δ, x2 = δ̇, x3 = Eq and u = EFD. We obtain

ẋ1 = x2

ẋ2 =
P

M
− D

M
x2 −

η1
M
x3 sinx1

ẋ3 = −η2
τ
x3 +

η3
τ

cosx1 +
1

τ
u

(b) With Eq being constant, the model reduces to

ẋ1 = x2

ẋ2 =
P

M
− D

M
x2 −

η1
M
Eq sinx1

which is the pendulum equation with input torque P/M .

(c) The equilibrium points of the simplified equation are given by sinx1 =
P

η1Eq
, x2 = 0.

SOLUTION 1.9

1. Problems involving valves are typically nonlinear.

2. This is a typical nonlinear system. There is a saturation somewhere in the system.

3. A linear system since the acceleration (due to gravity) is constant.

4. There is nothing to indicate that this system is nonlinear, it has the characteristics of a LTI-system so far.

5. This function is stochastic and cannot be linear. But just because it is not linear can it then be classified
as nonlinear?
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6. The control system for JAS 39 Gripen consists of 50 different linear controllers between which the system
switches around depending on the operating conditions. The airplane itself is highly nonlinear.

7. This is a nonlinear system. It can only take on two different values, on and off.

SOLUTION 1.10

(a) The system ẋ = f(x) = xu(x) is locally asymptotically stable at x = 0 if

df

dx

∣∣∣∣
x=0

= u(0) < 0

(b) u = kx gives ẋ = kx2. If k > 0 then x → ∞ for x(0) > 0 and if k < 0 then x → −∞ for x(0) < 0;
hence the system is unstable. For k = 0, we have the equation ẋ = 0 which is not asymptotically stable.

(c) k1 = 0 and k2 < 0 (e.g., k2 = −1) gives ẋ = k2x, which is (globally) asymptotically stable.

(d) The Lyapunov function V (x) = x2/2 can be used to prove that ẋ = −x3 is globally asymptotically
stable.

(e) Follows from the feedback system

ẋ = Ax+Bu

y = Cx

u = ∆y

3.2 Solutions to Computer exercise: Simulation

SOLUTION 2.1

See Lecture 2 for some hints.

SOLUTION 2.2

Blank

SOLUTION 2.2

Blank

SOLUTION 2.3

Blank

SOLUTION 2.4

Blank

SOLUTION 2.5

Plot only one variable, e.g., x1.
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3.3 Solutions to Linearization and Phase-Plane Analysis

SOLUTION 3.1

(a) The equilibrium points are

(x1, x2) = (0, 0), (
√
6, 0), (−

√
6, 0),

which are stable focus, saddle, and saddle, respectively.

(b) The equilibrium points are

(x1, x2) = (0, 0), (−2.5505,−2.5505), (−7.4495,−7.4495),

which are stable node, saddle point, and stable focus, respectively.

(c) The equilibrium points are

(x1, x2) = (0, 0), (1, 0), (0, 1),

which are unstable node, saddle, and stable node, respectively.

(d) The equilibrium is

(x1, x2) = (0, 0),

which is an unstable focus.

(e) The equilibrium point is

(x1, x2) = (0, 0),

which is a stable focus.

(f) The system has an equilibrium set

x21 + x22 = 1

and an equilibrium point

(x1, x2) = (0, 0),

which is a stable focus.

SOLUTION 3.2

The three equilibrium points are

(x1, x2) = (0, 0), (
√

(ac/b), a), (−
√
(ac/b)).

The first equilibrium point is a saddle. The other equilibria are stable nodes if 8a < c and stable focuses if
8a > c.
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SOLUTION 3.3

(a) The system has three equilibrium points

(x1, x2) = (0, 0), (a, 0), (−a, 0)

where a is the first positive root of

a− tan(
a

2
) = 0

given, approximately, by a = 2.33. The origin is a stable node, while the other two equilibria are saddles.

(b) The system has the origin as a unique equilibrium point, being a saddle.

(c) The system has the equilibrium points

(x1, x2) = (0, 0), (1, 2), (−1, 2),

which are saddle, stable focus, and stable focus, respectively.

SOLUTION 3.4

Close to the origin, the saturation element opens in the linear region, and all system are assigned the same
closed loop dynamics. Far away from the origin, the influence of the saturated control can be neglected, and
the open loop dynamics governs the behaviour.

(a) System (a) has one stable and one unstable eigenvalue. For initial values close to the stable eigenvector,
the state will move towards the origin. For initial values close to the unstable eigenvector, the system
diverges towards infinity. This corresponds to the rightmost phase portrait.

(b) All eigenvalues of system (b) are unstable. Thus, for initial values sufficiently far from the origin, the
system state will diverge. This corresponds to the leftmost phase portrait. Note how the region of
attraction (the set of initial states, for which the state converges to the origin) is severly limited.

(c) System (c) is stable also in open loop. This corresponds to the phase portrait in the middle.

SOLUTION 3.5

(a) The equilibrium points are obtained by setting ẋ = 0. For K 6= −2, the origin is the unique equilibrium
point. When K = −2, the line x1 = 2x2 is an equilibrium set.

(b) The Jacobian and its eigenvalues are given by

∂f

∂x
(0) =

[
−1 −K
1 −2

]
, λ = −3

2
±
√

1

4
−K.

Thus, the closed loop system is asymptotically stable about the origin for K > −2. Depending on the
value of K, we can origin has the following character

1

4
< K stable focus

−2 < K <
1

4
stable node

K < −2 saddle.
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SOLUTION 3.6

The equilibria are given by sinx01 =
P

ηEq
, x02 = 0. The characteristic equation for the lineraisation becomes

λ2 + αλ+ β = 0,

where α = D
M > 0 and β =

ηEq

M cosx01. Depending on α, β the equilibria are stable focus, stable nodes or
saddle points.

SOLUTION 3.7

˙̃x = A(t)x̃, where

A(t) =

(
−2 sin2(t) 1− sin(2t)
−1− sin(2t) −2 cos2(t)

)
.

SOLUTION 3.8

7

5
¨̃x = g cos(φ0)φ̃+

2r

5
¨̃
φ

SOLUTION 3.9

Using the identitiy

(sin t)3 =
3

4
sin t− 1

4
sin 3t

we see that u0(t) = sin (3t), y0(t) = sin t is a nominal solution. The linearisation is given by

¨̃y + 4 sin2 t · ỹ = −1

3
ũ.

SOLUTION 3.10

Introduce f through the equation θ̈ = f(θ, θ̇, β, β̇) and let c1, c2, c3 denote the (positive) constants in f . Lin-
earizing f around θ = β = β̇ = 0 gives

f(θ, θ̇, β, β̇) ≈ ∂f

∂θ
θ +

∂f

∂θ̇
θ̇ +

∂f

∂β
β +

∂f

∂β̇
β̇

= c1θ + c2β + c3β̇

where β̇ = u. Hence, the linearized system is given by

θ̈ = c1θ + c2β + c3u.

It follows that in the Laplace domain

s2θ = c1θ + c2β + c3u = c1θ + (c2/s+ c3)u

and thus
G(s) =

c3s+ c2
s(s2 − c1)

.

The poles are located in 0,±√
c1 and the zero in −c2/c3. The bicycle is, as expected, unstable.
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SOLUTION 3.11

(a) With x = (θ, θ̇, φ, φ̇)T , we have if sin θ 6= 0,

ẋ =




x2
x24 sinx1 cosx1 − sinx1

x4
−2x2x4 cosx1/ sinx1




(b) Setting all derivatives in the original equation equal to zero, yields sin θ = 0. Hence, the equilibria are
determined by θk = kπ with φ taking any value. (Note that the equilibria cannot be obtained directly
from the first-order form in (a).)

(c) The solution (θ(t), φ(t)) = (π/3, t
√
2) fulfills the first pendulum equation, since

−2 sinπ/3 cosπ/3 + sinπ/3 = 0

The second equation is also satisfied.

(d) Denote the first pendulum equation by f1(z) = 0 and the second by f2(z) = 0 where z = (θ, θ̇, θ̈, φ, φ̇, φ̈)T .
To linearize these equations, we write

0 = f1(z(t)) = f1(z
0(t) + δz(t)) ≈ f1(z

0(t)) +
df1
dz

∣∣∣∣
z=z0(t)

δz(t)

=
∂f1
∂z1

∣∣∣∣
z=z0(t)

δz1(t) + · · ·+ ∂f1
∂z6

∣∣∣∣
z=z0(t)

δz6(t)

and similar for f2. Deriving the partial derivatives and using the definition of z (δz1 = δθ etc.), we get

3

2
δθ + δθ̈ −

√
3

2
δφ̇ = 0

√
2δθ̇ +

√
3

2
δφ̈ = 0
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3.4 Solutions to Lyapunov Stability

SOLUTION 4.1

(a) Linearization about the system around the origin yields

A =
∂f

∂x
= 3ax2

Thus, at the origin we have A = 0. Since the linearization has one eigenvalue on the imaginary axis,
linearization fails to determine stability of the origin.

(b) V (0) = 0, V (x) 6= 0 for x 6= 0, and V (x) → ∞ as x → ∞. Thus, V (x) satisfies the conditions
for being a Lyapunov function candidate. Its time derivative is

V̇ (x) =
∂V

∂x
f(x) = 4ax6 (3.5)

which is negative definite for a < 0, and positive definite for a > 0. The desired results now follow
from Lyapunov’s stability and instability theorems.

(c) For a = 0, the system is linear and given by

ẋ = 0

The system has solutions x(t) = x0 for all t. Thus, the system is stable. A similar conclusion can
be drawn from the Lyapunov function used in (b).

SOLUTION 4.2

(a) We use the pendulum’s total energy

V (x) = gl(1− cos(x1)) +
l2

2
x22

as Lyapunov function. We see that V is positive, and compute the time derivative

dV (x)

dt
=
∑

i

∂V

∂xi
ẋi = gl sin(x1)x2 + x2(−gl sin(x1)) = 0

From Lyapunov’s theorem, we conclude that the origin is a stable equilibrium point. Since V̇ (x) = 0,
we can also conclude that the origin is not asymptotically stable; trajectories starting at a level surface
V (x) = c, remain on this surface for all future times.

(b) For k 6= 0, using V (x) as above, similar calculations give

dV (x)

dt
= −kl

2

m
x22

V̇ (x) is negative semidefinite. It is not negative definite because V̇ (x) = 0 for x2 = 0. In other words
V̇ (x) = 0 along the x1 axis.

Now, consider a modified Lyapunov function

V (x) =
g

l
(1− cos(x1)) + xTPx
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for some positive definite matrix P . In order for P to be positive definite, the elements of P must satisfy

p11 > 0; p22 > 0; p11p22 − p212 > 0

The derivative V̇ (x) is given by

V̇ (x) =
g

l
(1− p22)x2 sinx1 −

g

l
p12x1 sinx1+

+ (p11 − p12
k

m
)x1x2 + (p12 − p22

k

m
)x22

We now want to choose p11, p12 and p22 such that V̇ (x) is negative definite. Since the cross terms
x1 sinx1 and x1x2 are sign indefinite, we cancel them out by letting p22 = 1, p11 = p12k/m. With these
choices, p12 must satsify 0 < p12 < k/m. We let p12 = 0.5k/m, and obtain

V̇ (x) = −1

2

g

l

k

m
x1 sinx1 −

1

2

k

m
x22.

The term x1 sinx1 > 0 for all 0 < |x1| < π. Within this strip, V (x) is positive definite, and V̇ (x) is
negative definite. We conclude that the origin is asymptotically stable.

SOLUTION 4.3

With V = kx2/2 + ẋ2/2 we get V̇ = −dẋ4 ≤ 0. Since V̇ = 0 only when ẋ = 0 and the system equation then
gives ẍ = −kx 6= 0 unless also x = 0, we conclude that x = ẋ = 0 is the only invariant set. The origin is
globally asymptotically stable since the Lyapunov function is radially unbounded.

SOLUTION 4.4

(a) The eigenvalues of A are λ = −1/2± i
√
3/2.

(b) (i) We have

V (x) = p11x
2
1 + 2p12x1x2 + p22x

2
2 = (if p11 6= 0)

= p11(x1 +
p12
p11

x2)
2 + (p22 −

p212
p11

)x22

If p11 > 0 and p11p22 − p212 > 0, both terms are non-negative. Moreover, V (x) → ∞ as x → ∞,
and V (x) = 0⇒ x1 = x2 = 0 (This proves the "if"-part). If the conditions on pij do not hold, it is
easy to find x such that V (x) < 0 (proving the "only if"-part).

(ii) We want to solve
[
0 1
−1 −1

] [
p11 p12
p12 p22

]
+

[
p11 p12
p12 p22

] [
0 −1
1 −1

]
=

[
−1 0
0 −1

]

Reading off the elements, we see that





2p12 = −1

p22 − p11 − p12 = 0

−2p12 − 2p22 = −1

which has the solution p11 = 1.5, p12 = −0.5 and p22 = 1. P is a positive definite matrix.
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(c) Use the Matlab command lyap(A’,eye(2)).

SOLUTION 4.7

SOLUTION 4.6

(a) The mistake is that V is not really positive definite. The student has forgotten to check that limx→∞ V (x) =
∞, which must hold for a positive definite function. In fact,

V (x1, x2) =
x21

1 + x21
+

1

2
x22

so that limx→∞ = 1. Consequently, V is not positive definite.

(b) No, the problem is not that the student was not clever enough to find a Lyapunov function. There is no
Lyapunov function, since the system is not globally stable. Let’s show this now. In part (a), you may
have noticed that V̇ = 0 for all x. In other words, V is an “integral” of the motion; the trajectories lie on
the curves of constant value of V , i.e., we have

V (x) =
1

2
x22 +

x21
1 + x21

= V (x0) = c

If c > 1 then x(t) cannot change sign, since

x22 = c− x21
1 + x21

≥ c− 1

In this case, we have |x2| ≥
√
c− 1. Since ẋ1 = x2, it follows that |x1| → ∞ as t → ∞. Roughly

speaking, if the system starts with more initial stored energy than can possibly be stored as potential
energy in the spring, the trajectories will diverge.

SOLUTION 4.7

Left blanc

SOLUTION 4.8

Verify that V (0) = 0, V (x) > 0 for x 6= 0 and V (x) → ∞ for ||x|| → ∞. Now,

(a) We have

d

dt
V (x1, x2) = 8x1ẋ1 + 4x2ẋ2 + 16x31ẋ1 =

= 8x1x2 + 4x2(−2x1 − 2x2 − 4x31) + 16x31x2 =

= −8x22

Since V̇ (x) ≤ 0, we conclude global stability.
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(b) The Lyapunov function has V̇ (x) = 0 for x2 = 0. For x2 = 0, we obtain

ẋ2 = −x1(2 + x21).

which implies that if x2 should remain zero, then x1 has also to be zero. The invariance theorem from
the lectures can now be used to conlclude global asymptotic stability of the origin.

SOLUTION 4.9

(a) For |2x1 + x2| ≤ 1, we have

ẋ =

[
0 1
−1 −1

]
x. (3.6)

The system matrix is as. stable. Hence, the origin is locally asymptotically stable.

(b) We have V (x) > 0 in the first and third quadrant.

V̇ (x) = ẋ1x2 + x1ẋ2 = x21 − x1sat(2x1 + x2) + x22.

Now, let us evaluate V̇ (x) on the strip x1x2 = c and suppose that c > 0 is chosen so large that the
saturation is active, i.e., |2x1 + x2| > 1. By inspection of the dynamics, we see that for sufficiently
large c, no trajectories can escape from the first quadrant. We can therefore use the following Lyapunov
argument. Consider the Lyapunov function derivative

V̇ (x) = x21 − x1 +
c2

x21
.

If c ≥ 1, V̇ (x) is positive for all x1 ≥ 0. Hence, all trajectories starting in the first quadrant to the right
of the curve x1x2 = c cannot cross the curve. Consequently, they cannot reach the origin.

(c) It follows from (b) that the origin is not globally asymptotically stable.

SOLUTION 4.10

(a) Integration of the equality d
dσf(σx) =

∂f
∂x (σx) · x gives the equation

f(x) =

∫ 1

0

∂f

∂x
(σx) · x dσ.

We get

xTPf(x) + fT (x)Px = xTP

∫ 1

0

∂f

∂x
(σx)xdσ +

∫ 1

0
xT
[
∂f

∂x
(σx)

]T
dσPx

= xT
∫ 1

0

{
P
∂f

∂x
(σx) +

[
∂f

∂x
(σx)

]T
P

}
dσx ≤ −xTx

(b) Since P is positive definite, V (x) is clearly positive semidefinite. To show that it is positive definite, we
need to show that f(x) = 0 only when x = 0. But the inequality proved in (a) shows that if f(p) = 0
then

0 ≤ −pT p.
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(c) Suppose that f is bounded, i.e. that ‖f(x)‖ ≤ c for all x. Then

‖xTPf + fTPx‖ ≤ 2c‖P‖‖x‖.

But this contradicts the inequality in (a) as ‖x‖ → ∞.

(d) We have shown that V is positive definite and radially unbounded. Moreover

V̇ = ẋT
[
∂f

∂x

]T
Pf + fTP

∂f

∂x
ẋ = fT

[
P
∂f

∂x
(x) +

(
∂f

∂x
(x)

)T

P

]
f ≤ −‖f(x)‖2.

Hence V̇ (x) < 0 for all x 6= 0. Thus, the origin is globally asymptotically stable.

3.5 Solutions to Input-Output Stability

SOLUTION 5.1

See the Figure 3.1.
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Figure 3.1: The balls B(0, 1) in Exercise 4.1

SOLUTION 5.4

We use the definitions

‖y(t)‖∞ = sup
t

|y(t)|

and

‖y(t)‖2 =
√∫ ∞

−∞
|y(t)|2dt
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(a)

‖y(t)‖2 =
∫ ∞

0
a2 sin2(t)dt = ∞

, hence, the signal has infinite energy.

‖y(t)‖∞ = sup
t

|asin(t)| = |a|

(b)

‖y(t)‖2 =
∫ ∞

1

1

t2
dt = 1

and

‖y(t)‖∞ = sup
t>1

|1
t
| = 1

(c)

‖y(t)‖2 =
∫ ∞

0
(e−t(1− e−t))2dt =

√
3

6

and

‖y(t)‖∞ = sup
t>0

|e−t(1− e−t)| =

sup
0≤x≤1

|x(1− x)| = 1

4

SOLUTION 5.3

‖G‖ = 1, ζ >
1√
2

since no resonance peak, and

‖G‖ =
1

2ζ
√

1− ζ2
, 0 < ζ <

1√
2
,

and in this case there is a resonance peak.

SOLUTION 5.4

Note that the requirement that the block ψ(y) should be static is not a restriction for the Small Gain Theorem
and the Passivity Theorem, since they can also cope with dynamic nonlinearities. For simplicity, we will only
consider the case when the linear system is asymptotically stable.

(a) What are the restrictions that we must impose on the nonlinearities so that we can apply the various
stability theorems?
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The Nyquist Criterion ψ(y) must be a linear function of y, i.e., ψ(y) = k1y for some constant k1.

The Circle Criterion ψ(y) must be contained in some sector [k1, k2].

Small Gain Theorem ψ(y) should be contained in a symmetric sector [−k2, k2]. The gain of the non-
linearity is then k2.

The Passivity Theorem ψ(y) is strictly passive for all nonlinearities in the sector (ǫ, 1/ǫ) for some small
ǫ.

These conditions are illustrated in Figure 3.2.

(b) If the above restrictions hold, we get the following conditions on the Nyquist curve

The Nyquist Criterion The Nyquist curve should not encircle the point −1/k2

The Circle Criterion The Nyquist curve should not intersect the disc D(k1, k2).

Small Gain Theorem The Nyquist curve has to be contained in a disc centered at the origin, with radius
1/k2.

The Passivity Theorem The Nyquist curve has to stay in the right half-plane, Re(G(iω)) ≥ 0.

These conditions are illustrated in Figure 3.3.
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Figure 3.2: Sector conditions on memoryless nonlinearity.
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Figure 3.3: Conditions on Nyquist curve matched to sector conditions on memoryless nonlinearity.

SOLUTION 5.5

(a) The systems belong to the sectors [0, 1], [0,∞] and [−1,∞] respectively.

(b) Only the saturation nonlinearity (the leftmost nonlinearity) has finite gain, which is equal to one. The
other two nonlinearities have infinite gain.

(c) The saturation and the sign nonlinearity are passive. The rightmost nonlinearity is not passive.

SOLUTION 5.6

Let us first study the complete Circle criterion:

Theorem 1 (4.13 Circle Criterion). If the system

ẋ = Ax−Bψ(y)

y = Cx

satisfies the conditions

1) the matrix A has no eigenvalues on the jω axis, and has ρ eigenvalues strictly in the right half-plane;

2) the nonlinearity ψ(y) belongs to the sector [k1, k2].

and, in addition, one of the following holds
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3a) 0 < k1 ≤ k2, the Nyquist plot of G(iω) does not enter the disk D(k1, k2) and encircles it ρ times

counter-clockwise.

3b) 0 = k1 < k2, ρ = 0, and the Nyquist plot of G(iω) stays in the half-plane Rep > −1/k2

3c) k1 < 0 < k2, ρ = 0, and the Nyquist plot of G(iω) stays in the interior of the disk D(k1, k2)

3d) k1 < k2 < 0, the Nyquist plot of −G(iω) does not enter the disk D(−k1,−k2) and encircles it ρ times

counter-clockwise

then the equilibrium point 0 of the system is globally asymptotically stable.

The open loop system has one unstable pole, and we are restricted to apply the first or fourth version of the
circle criterion. In this example, we can place a disk with center in −3 and with radius 0.8, and apply the first
version of the Nyquist criterion to conclude stability for all nonlinearities in the sector [0.26, 0.45].

SOLUTION 5.7

(a) >> A=[1 10; 0 1];svd(A)

ans =

10.0990

0.0990

(b)

σ1(AB) = sup
x

‖ABx‖
‖x‖ = sup

x

(‖ABx‖
‖Bx‖ · ‖Bx‖‖x

)

sup
y

(‖Ay‖
‖y‖ · sup

x

‖Bx‖
‖x‖

)
= σ1(A)σ1(B)

SOLUTION 5.8

(a) The proof follows directly from the definition of passivity, since, according to the definition of a storage
function

〈u, y〉T =

∫ T

0
uT y dt

≥
∫ T

0
V̇ (x)dt = V (x(T ))− V (x(0)) = V (x(T ))

which is non-negative since V (x(T )) ≥ 0. Passivity follows.

(b) With V = 1
2x

TPx we get

V̇ =
1

2
ẋTPx+

1

2
xTPẋ

=
1

2
xT (ATP + PA)x+

1

2
uTBTPx+

1

2
xTPBu = −1

2
xTQx+ yTu ≤ yTu

since Q > 0, which proves passivity.
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Figure 3.4: Nyquist curve of linear subsystem.

SOLUTION 5.9

The linear system G(s) corresponds to

ẋ = Ax+Bu, y = BTPx, x(0) = 0.

Let V = xTPx. Then

V̇ = ẋTPx+ xTPẋ

= xT (ATP + PA)x+ 2xTPBu = −xTx+ 2yTu

Integrate and use the fact that V (0) = 0, then

∫ T

0
y2udt = V (T ) +

∫ T

0
xTxdt ≥ 0,

which proves passivity.

SOLUTION 5.10

You can solve this problem in many ways. In the solutions manual, we will base our proof on the circle criterion.
With the obvious state vector x = (θ, ω, z)′, we rewrite the system in the feedback connection form

ẋ = Ax−Bψ(y) =




0 1 0
−2 −1 1
2 0 −2


x−



0
0
1


 sat(

[
1 0 −1

]
x)

The Nyquist curve of the linear system is illustrated in Figure 3.4. Since the Nyquist curve does not intersect
the half plane Re(G(iω)) < −1/2, we conclude stability for all ψ in the sector [0, 2]. Since the saturation
element lies in the sector [0, 1], we conclude stability of the closed loop.
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SOLUTION 5.11

(a) We have

〈y, u〉 =
∫ T

0
y(t)u(t)dt =

=

∫ T

0
{u(t)uc(t)}{H(u(t)uc(t))}dt =

=

∫ T

0
w(t)H(w(t))dt = 〈w,H(w)〉

where w = ucu. Since H is passive, the result follows.

(b) We will only consider the case where θ0 = 0. The case θ0 is a little tricker, and the discussion about this
case is postponed to the course in Adaptive Control.

If θ0 = 0, the system equations read

e(t) = G(p)θuc(t)

θ̇(t) = −γuc(t)e(t)

In light of exercise (a), we can identify the second equation modeling the signal w(t) = uc(t)e(t) sent
into an integrator with gain γ and postmultiplied by uc (See the lecture slides for an illustration). This
system is passive, and interconnected in a negative feedback loop with the strictly passive system G.
Stability now follows from the passivity theorem.

SOLUTION 5.12

(a) For simplicity we include ∆ in the nonlinearity, and thus consider Ĝ(s) = 1/[s(s+1)] in feedback with
f̂(y) = ∆K arctan(y). Note that Re ˆG(iω) = −1/(1 + ω2) > −1 and that f̂(·) is bounded by the
sector [0,∆K]. The Circle Criterion now gives BIBO stability for ∆K < 1.

(b) Small Gain Theorem is not applicable since the gain of 1/s is infinite.

SOLUTION 5.13

(a) True. Suppose x̂ and x̃ are two equilibria. A trajectory that starts in either point, stays there forever since
f(x̂) = f(x̃) = 0.

(b) False. As a counter example, take for instance the system from Lecture 3:

ẋ1 = x1 − x2 − x1(x
2
1 + x22)

ẋ2 = x1 + x2 − x2(x
2
1 + x22).

(c) True. Follows from Lyapunov’s linearization method (Lectures 3 and 4).

(d) True. For example,

ẋ =

(
−1 0
0 −1

)
x
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(e) True. Suppose it was not true. Consider a solution of ẋ = f(x) that starts in x0 6= 0 and ends at
x(T ) = x1 = 0. Then, ẋ = −f(x) has a solution that starts in x1 = 0 and ends at x0 6= 0. However,
ẋ = −f(x) also has the solution x(t) = 0 for all t ∈ (0, T ), since ẋ = 0. This is a contradiction to that
ẋ = −f(x) has a unique solution, which holds because f is C1 (Lecture 1). Hence, the statement in the
problem must be true.

SOLUTION 5.14

(a) The linearization is given by

A =
df

dx
(0, 0) =

(
0 −1
1 −1

)

with characteristic polynomial s2 + s+ 1. Hence, the system is asymptotically stable.

(b)

P =

(
3 −1
−1 2

)

(c)

V̇ =
dV

dx
f(x) = 2

(
x1 x2

)
P

(
−x2

x1 + (x21 − 1)x2

)

gives the expression.

(d) c = 4 corresponds to that largest Ωc contained in Π.

SOLUTION 5.15

1. True

2. False, We get no information about BIBO-stability from that particular methods (if they are not fulfilled).
We have to try some other methods.

3. True, only one of them has to be fulfilled.

4. False, One of them has to be strictly passive to get a BIBO-stable system.

5. True

6. True
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3.6 Solutions to Describing Function Analysis

SOLUTION 6.1

Let the input to the relay be

u(t) = A sin(ωt) = A sin(φ)

The ouput of the relay is then

y(φ) =





−H 0 < φ < φ0

H φ0 < φ < π + φ0

−H π + φ0 < φ < 2π

where φ0 = arcsin(D/A). We get

a1 =
1

π

∫ 2π

0
y(φ) cos(φ)dφ

=
1

π

∫ φ0

0
(−H) cos(φ)dφ+

1

π

∫ π+φ0

φ0

H cos(φ)dφ+
1

π

∫ 2π

π+φ0

(−H) cos(φ)dφ

= −4H

π
sin(φ0)

and

b1 =
1

π

∫ 2π

0
y(φ) sin(φ)dφ

=
1

π

∫ φ0

0
(−H) sin(φ)dφ+

1

π

∫ π+φ0

φ0

H sin(φ)dφ+
1

π

∫ 2π

π+φ0

(−H) sin(φ)dφ

=
4H

π
cos(φ0)

We obtain

N(A) =
4H

πA
(cos(φ0)− i sin(φ0))

The identity cos(z) =
√
1− sin2(z) gives the desired result.

SOLUTION 6.2

Use the interpretation of describing function as “equivalent gain”. We have 1-b, 2-c, 3-a, 4-d.

SOLUTION 6.3

Denote the nonlinearity by f . For memoryless, static nonlinearities, the describing function does not depend
on ω, and the describing function in Slotine and Li reduces to

N(A) =
b1(A) + ia1(A)

A

where a1 and b1 can be computed as

a1 =
1

π

∫ 2π

0
f(A sin(φ)) cos(φ) dφ (3.7)

b1 =
1

π

∫ 2π

0
f(A sin(φ)) sin(φ) dφ. (3.8)

102



(a) First, we notice that the saturation is a odd function, which implies that a1 = 0. In order to simplify the
computations of b1, we set H = 1 and note that the saturation can be described as

f(A sin(φ)) =

{
A/D sin(φ) 0 ≤ φ ≤ φl

1 φl < φ < π/2

Here, φl = arcsin(D/A) denotes the value of φ where so that f saturates. Now,

b1 =
1

π

∫ 2π

0
u(φ) sin(φ)dφ =

=
4

π

∫ π/2

0
u(φ) sin(φ)dφ =

=
4

π

(∫ φl

0
A/D sin2(φ)dφ+

∫ π/2

φl

sin(φ)dφ

)
=

=
4

π

(∫ φl

0
A/(2D)(1− cos(2φ))dφ+

∫ π/2

φl

sin(φ)dφ

)
=

=
4

π
(A/(2D)(φl − sin(φl) cos(φl)) + cos(φl)) =

=
2A

Dπ

(
φl +

D

A
cos(φl)

)

Thus, the describing function for the normalized saturation is

N(A) =
2

Dπ
(φl +

D

A
cos(φl))

Now, using the calculation rule Nαf (A) = αNf (A), we find that for the saturation under consideration
we have

N(A) =
2H

Dπ
(φl +

D

A
cos(φl))

(b) We see that the nonlinearity is a superposition of a linear function

g(e) =
H

D
e

and the nonlinearity −f(e) with f(e) as in (a). Using the fact that a linear function g(e) = ke has
describing function N(A) = k, and the superposition rule Nf+g(A) = Nf (A) +Ng(A), we find

N(A) =
H

D

(
1− 2

π

{
φl +

D

A
cos(φl)

})

(c) Noting that this nonlinearity can be written as the sum of the two nonlinearities in (a) and (b), we arrive
at the describing function

N(A) =
2(α− β)

π

(
φl +

D

A
cos(φl)

)
+ β.
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SOLUTION 6.4

Follows from the integration rule
∫
f(ax)dx =

1

a
F (ax)

where F (x) =
∫
f(x)dx.

SOLUTION 6.5

The describing function is

N(A) = k1 + 3A2k2/4

Note, however, that the output y(T ) of the nonlinearity for the input e(t) = A sin(φ) is

y(t) = A2k2/2 + (k1A+ 3A3k2/4) sin(φ)

−A2k2/2 · cos(2φ)−A3k3/4 · sin(3φ)

We conclude that the term k2x
2
2 does not influence N(A). Still, we can not just apply the describing function

method, since there is a bias term. If the linear system has integral action, the presence of a constant offset on
the input will have a very big influence after some time.

SOLUTION 6.6

(a) When the saturation works in the linear range, we have the closed loop dynamics

G(s) =
−5s

s2 + (1− 5H)s+ 25

which is unstable for H > 0.2. Thus, the state can not remain small. In saturation, on the other hand, the
nonlinearity generates a constant(“step”) input to the system. The final value theorem then gives

lim
t→∞

y(t) = lim
s→0

−5s

s2 + s+ 25
= 0

The observation that y(t) → 0 contradicts the assumption that the nonlinearity remains saturated.

(b) We should investigate intersection of the Nyquist curve and −1/A. Since A ∈ [H,∞), −1/N(A) lies in
the interval (−∞,−1/H).

The frequency response of the system is

G(iω) =
−i5ω

25− ω2 + iω

which intersects the negative real axis for ω′ = 5 rad/s. The value of G(iω′) = −5. Thus, there will be
an intersection if H > 0.2. The frequency of the oscillation is estimated to 5 rad/s, and for fixed H .

(c) The Nyquist curve of the system is shown in Figure 3.5. The function −1/N(A) is also displayed, with
an arrow in the direction of increasing A. The Nyquist curve encirlces the points Re(G(iω)) > −5,
indicating increased oscillation amplitude. The points to the left of the intersection are not encircled,
indicating stability and a decaying oscillation amplitude. We can thus expect a stable limit cycle.
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Figure 3.5: Nyquist curve and −1/N(A) for oscillator example.

SOLUTION 6.7

(a) Introduce θ0 = arcsin(a/A) and proceed similarly to the saturation nonlinearity.

(b) The describing function has maximum for

A∗ =
√
2a

wich gives

N(A∗) =
2

πa

The Nyquist curve crosses the negative real axis for ω =
√
2, for which the gain isG(i

√
2) = 2/3. Thus,

we should expect no oscillations if

a >
4

3π
.

SOLUTION 6.8

(a) The descibing function for a relay with amplitude D is given by

N(A) =
4D

πA

−1/N(A) lies on the negative real axis. If the Nyquist curve intersects the negative real axis, the describ-
ing function methods will predict a sustained oscillation

−4D

πA
|G(iωu)| = −1

Thus, given the amplitude A of the oscillation, we estimate the ultimate gain as

Ku = 1/|G(iωu)| =
4D

πA

The ultimate period is the period time of the oscillations

Tu = 2π/ω
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(b) From the simulation, we estimate the amplitude A = 0.6 which gives Ku ≈ 0.47. The ultimate period
can be estimated directly from the plot to be Tu ≈ 2. Note that the estimates have good correspondance
with the analytical results (which require a full process model)

SOLUTION 6.9

Intentionally left blank.

SOLUTION 6.10

(a) The system consists of G(s) = ab exp(−sL)/s in negative feedback with a relay. The curve −1/N(A)
for the relay is the negative real axis, which G(iω) intersects at points

−π
2
− ωL = π + 2πk, k = 0, 1, 2, . . . ,

that is, frequencies

ωk =
π

2L
+

2π

L
k, k = 0, 1, 2, . . . .

Only k = 0 corresponds to a stable oscillation. The amplitude A of the relay input y follows from the
equation −1/N(A) = G(iω) or

πA

4
=
ab

ω0
,

that is,

A0 =
4ab

πω0
.

The amplitude of the oscillations in x is thus

A0

b
=

4a

πω0
,

with ω0 as given above.

SOLUTION 6.11

(a) The output of the Clegg integrator over one period of the input is shown below:

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
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(b) The output of an integrator with sinusoidal input is

∫ t

0
A sinωt dt =

A

ω

(
1− cosωt

)
.

Using this in the derivation of the describing function N(A,ω) = [b1(ω) + ia1(ω)]/A of the Clegg
integrator gives

a1(ω) =
1

π

∫ π

0
x(φ) cosφ dφ =

2A

πω

∫ π

0
(1− cosφ) cosφ dφ = · · · = −A

ω

b1(ω) =
1

π

∫ π

0
x(φ) sinφ dφ =

2A

πω

∫ π

0
(1− cosφ) sinφ dφ = · · · = −4A

πω

(c) An advantage with the Clegg integrator is that it has a phase lag of 38 degrees, which is better than the
90 degrees for an ordinary integrator. However, a disadvantage is that the Clegg integrator is likely to
induce oscillations.

SOLUTION 6.12

(a) The describing function represents an amplitude depending gain N(A). Note that N(A) is real-valued
(why?). A rough sketch is shown below:

2

2 4 6

N(A)

A

(b) We need to choose G such that its Nyquist curve intersects −1/N(A). Note that −1/N(A) belongs to
the negative part of the real axis and that minN−1(A) = 1/2. A suitable candidate is

G(s) =
2

s(s+ 1)2
.
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SOLUTION 6.13

0 2 4 6 8 10 12 14 16 18 20
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(a) See plot above.

(b) The Nyquist curve of e−s/s intersects the negative real axis for the first time at ω = π/2. The intersection
corresponds to a stable oscillation. The period time estimate is thus 2π/ω = 4.

(c) Any trajectory starting in x(0) 6= 0 will at some instance intersect the switching surface x = 0. Suppose
that time instance is at t0 = 0 and the intersection is from the positive side. Then at time T the integrator
shifts sign from ẋ = −1 to ẋ = +1. At 2T the state intersects the switching surface from the negative
side, and the procedure repeats itself. Hence, the period is 2T + 2T = 4T .

(d) −1/N(A) for the saturation sat(·) (without k) starts at (−1, 0) and follows the negative real axis towards
−∞. The Nyquist curve of ke−s/s intersects (−1, 0) when k sinω/ω = 1, see (b). Hence, for k = π/2.
So the DF analysis predicts an oscillation for k > π/2.

3.7 Solutions to Anti-windup

SOLUTION 7.1

We would like to write the system equations as

v = G(s)(−u)
u = φ(v)

where φ(·) denotes the saturation. Block diagram manipulations give

v = u−
(
AR

AwA
+

BS

AwA

)
u

=

(
AR+BS

AAw
− 1

)
(−u) = G(s)(−u)

Since the saturation element belongs to the sector [0, 1], we invoke the circle criterion and conclude stability if
the Nyquist curve of G(iω) does not enter the half plane Re(G(iω)) < −1. This gives the desired condition.
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SOLUTION 7.2

(a) Loopgain given by

G0(s) = F (s)G(s) =
KcN(sTi + 1 + s2TiTd)(s+ b)

T 2
i s

2(s+ 0.1)(s+ bN)

We choose b = 0.1 for simpler calculations. Note, that in reality this will not necessarily be a good
choice. With this choice, however, the imaginary part of G0(iω) is given by

−KcN(0.1TiN − 1 + ω2TiTd)

ωT 2
i (N + ω2)

which is negative for all ω > 0 if N > 10/Ti. Thus, the Nyquist curve of the loopgain is never crossing
the negative real axis and especially not the real axis to the left of −1, and the describing function method
predicts no autooscillations.

(b) It holds that

Ũ(s) =W (s)
[
U(s)− Ũ(s)

]
− F (s)G(s)U(s)

from which follows that Ũ(s) = −H(s)U(s) with

H(s) =
F (s)G(s)−W (s)

1 +W (s)

The describing function methods predicts no autooscillations if the Nyquist curve forH(s) does not cross
the negative real axis to the left of −1. This is equivalent with the Nyquist curve of

1 +H(s) =
1 + F (s)G(s)

1 +W (s)

not crossing the negative real axis. We start by calculating the denominator.

1 + F (s)G(s) =
s2(s+ 0.1) +Kc(s+ 1/Ti + s2Td)

s2(s+ 0.1)

=
(s+ αω0)(s

2 + 2ζω0s+ ω2
0)

s2(s+ 0.1)

=
(s+ 1)(s2 + 0.7s+ 0.25)

s2(s+ 0.1)

This leads to

1 +H(s) =
(s+ 1)(s2 + 0.7s+ 0.25)

s(s+ 0.1)(s+ 1/Tt)

If Tt = 1 it holds that

1 +H(s) =
s2 + 0.7s+ 0.25

s(s+ 0.1)

Let s = iω. The phase of the denominator is −π/2 for ω = 0 and decreases to −π for ω → ∞. The
phase of the nominator is 0 for ω = 0 and increases to π for ω → ∞. Therefor it holds that the phase of
1 + H(iω) is larger than −π for all frequencies ω > 0. Thus, the describing function method predicts
no autooscillations. Note that even all values for Tt such that 0 < Tt ≤ 1 are allowed, as the phase of
(iω + 1)/(iω + 1/Tt) is positive. Note also that we didn’t take into account values Tt > 1.

(c) The method in (a) does not require to measure or compute the saturated signal, which is an advantage.
A drawback is that the amplification of high frequency components increases, which can be a problem
especially in the case of strong measurement noise in the problematic frequency range. The method in
(b) does not modify the closed loop systems dynamic if the control signal is not saturated, which is an
advantage. A drawback is that the saturated control signal needs to be measured or calculated.

109



SOLUTION 7.4

Large Tt corresponds to low feedback of the error signal v−u (see the lecture slides for notation). Hence,
Tt = 3 corresponds to the largest overshoot in y, Tt = 2 corresponds to the slightly smaller overshoot
etc. Similarly for u, Tt = 3 corresponds to the curve that is saturated the longest amount of time etc.

SOLUTION 7.5

(a) The upper plots show ysp (solid) and y (dashed). The middle plots show P (solid) and I (dashed). The
lower plots show u (solid) and v (dashed).

From P in the middle plots we see that K ≈ 1.5. From the left plots, it follows that the maximum of

I(t) =
K

Ti

∫ t

0
[ysp(s)− y(s)] ds

is maxt I(t) ≈ 1 and attained at t ≈ 2. From the upper left plot we have
∫ 2
0 [ysp(s) − y(s)] ds ≈ 1.

Hence, approximately Ti = K = 1.5. From the lower plots we see that the saturation level is equal to
0.5.

(b)

G(s) = −(KTt − 1)Tis+KTt
Tis(Tts+ 1)

(c) With notation from the lectures, the saturation satisfies k1 = 0 and k2 = 1. Note the negative feedback.
The Circle Criterion is thus fulfilled if the Nyquist curve of −G is to the right of the line {z ∈ C : Re z =
−1}. Here Re (−G(iω)) = −1/(ω2 + 1), so the criterion is fulfilled. Hence, the closed-loop system is
BIBO stable for all K > 1.

3.8 Solutions to Friction, Backlash and Quantization

SOLUTION 8.1

The model is given by

dz

dt
= v − |v|

g(v)
z (3.9)

F = σ0z + σ1(v)
dz

dt
+ Fvv (3.10)

(a) For any constant velocity, v, (3.9) converges to the value

z =
g(v)

|v| v = g(v)sign(v)

and F therefore converges to

F = σ0g(v)sign(v) + Fvv
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(b) Consider the storage function V (z) = z2/2. We have

zv = z
dz

dt
+

|v|
g(v)

z2 ≥ z
dz

dt
= V̇ (t)

and passivity follows from the discussion in (+).

(c) Consider the storage function V (z) = σ0z
2. We have

Fv = Fvv
2 + (σ1ż + σ0z)(ż +

|v|
g(v)

z) (3.11)

≥ σ1ż
2 +

|v|
g(v)

σ0z
2 + (

|v|
g(v)

σ1 + σ0)zż (3.12)

Next, we separate out the storage function derivative and make a completion of squares to estimate the
additional terms

Fv ≥ σ0zż + σ1ż
2 + σ0

|v|
g(v)

z2 + σ1
|v|
g(v)

zż (3.13)

= V̇ + σ1

(
ż +

|v|
2g(v)

z

)2

+

(
σ0

|v|
g(v)

− σ1

( |v|
2g(v)

)2
)
z2 (3.14)

Since the second term is non-negative, we have

Fv ≥ V̇

and thus passivity if

σ0 − σ1
|v|

4g(v)
> 0

This concludes the proof.

111



SOLUTION 8.2

(a) The describing function for a relay has been derived on Lecture 6 to be

N(A) =
4F0

πA

(b) Using the superposition property of describing functions for static nonlinearities Nf+g = Nf +Ng, and
the fact that for a scalar gain y = ku the describing function is N(A) = k, we obtain

N(A) = Fv +
4F0

πA

(c) Stiction is a point-wise phenomenon (occurring for v = 0) with finite amplitude, and has no influence
on the integral calculations involved in the describing function computation. The describing function is
therefore the same as in (b).

SOLUTION 8.3

Recall from the lecture slides that the process is given by

ẋ = v

v̇ = −F + u

The velocity is observed through

v̂ = zv +Kvx

żv = −F̂ + u−Kv v̂

where F̂ denotes the estimated friction force, estimated by the observer

F̂ = (zF +KF |v̂|)sign(v̂)

żF = −KF (u− F̂ )sign(v̂)

Defining the observer errors

ev = v − v̂

eF = F − F̂

we obtain the observer dynamics

ėv = v̇ − ˙̂v = −F + u− (−F̂ + u−Kv v̂)−Kvv = −eF −Kvev

ėF = Ḟ − ˙̂
F = Ḟ − (−KF (u− F̂ )−Kf (−F̂ + u−Kvv̂)−Kvv) =

= Ḟ −KfKvev

The term Ḟ is zero (except at zero velocity where it is not well defined). Putting Ḟ = 0, we obtain
[
ėv
ėF

]
=

[
−Kv −1

−KvKf 0

] [
ev
eF

]
(3.15)

with the characteristic equation

λ(s) = s2 +Kvs−KvKf
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We conclude that the error dynamics are locally asymptotically stable if

Kv > 0,

−KvKf > 0

which implies the desired conditions.

SOLUTION 8.4

Intentionally left blank.

SOLUTION 8.5

We have

〈u, y〉T =

∫ T

0
uy dt =

∫ T

0
usat(u) dt ≥ 0

We conclude passivity from to the definition given in the lecture slides.

SOLUTION 8.6

Intentionally left blank.

SOLUTION 8.7

Intentionally left blank.

SOLUTION 8.8

(a) The system is defined by

ẋ = sat(u− x)

y = x+ sat(u− x)

If |u− x| ≤ 1 then y = u. If u− x > 1 then

ẋ = 1

y = x+ 1

and thus x will increase until u− x < 1 so that y = u holds again. Similar for u− x < −1.

SOLUTION 8.9

a) limA→∞ Im N(A) = 0 and limA→∞Re N(A) = 1 then − 1
N(A) → −1 as A → ∞. This means that when

the amplitude is large enough the Nyquist curve for G(s) will intersect − 1
N(A) in -1. The conclusion is that the

backlash can be neglected.
b) If the amplitude is smaller then the size of the backlash, the input signal will have no effect on the output.
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3.9 Solutions to High-gain and Sliding mode

SOLUTION 9.1

Let the output of the nonlinearity be u, so that u = f(v).

(a) We have

u = v2, v ≥ 0

which implies that

v =
√
u, u ≥ 0

(b) The piecewise linear characteristic

u =

{
k1v, |v| ≤ d

(k1 − k2)d+ k2v |v| > d

gives the inverse

v =

{
u/k1, |u| ≤ k1d

(u− sign(u)(k1 − k2)d)/k2 |u| > k1d

Consider a (unit) dead-zone with slope k1 = ǫ in the interval |v| ≤ d, and slope k2 = 1 otherwise. We
obtain the inverse

v =

{
u/ǫ, |u| ≤ ǫd

u+ sign(u)(1− ǫ)d, |u| > ǫd

The dead-zone nonlinearity and its inverse are shown in Figure 3.6.

−2 0 2
−2

−1

0

1

2

v

u=
f(

v)

Dead zone

−1 0 1
−2

−1

0

1

2

u

v=
f−

1 (u
)

Dead zone inverse

Figure 3.6: Deadzone and its inverse.

(c) See the slides from the lecture of backlash.
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SOLUTION 9.2

dGcl

Gcl
= S

dG

G
=

1

1 +KG

dG

G
= 0.001 ⇒

K = 0.298 ≈ 0.3

SOLUTION 9.3

(a) As an example, study

ẋ =

(
0 −2
1 −3

)
x−

(
0
1

)
sgn(x2)

for (x1, x2) = (2, ε). We get

ẋ =

(
−2ε
2− 3ε− 1

)
→ 0

1

The phase-portrait close to the x1 - axis (ε→ 0) is shown in Figure 3.7.

x1

x2

1−1

Figure 3.7:

(b) The switching surface is given by σ(x) = x2, where σ̇(x) = 0 ⇒ 0 = ẋ2 = x1 − 3x2︸︷︷︸
=0

+u which gives

ueq = −x1.

SOLUTION 9.4

(a) The sliding surface in a sliding mode design should be invariant, i.e., if x(ts) belongs to the sliding
surface σ(x) = 0, at time ts, then it belongs to the set σ(x) = 0 for all future times t ≥ ts. Thus, it must
hold that

σ(x) = σ̇(x) = 0

which yields the dynamics on the sliding surface.
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(i) We have

σ̇(x) = ẋ1 − x2 = ẋ1 − x1 = 0

The third equality implies that x1(t) → ±∞ on the sliding surface. Thus, forcing this surface to be
a sliding mode would give unstable solutions.

(ii) Similarly as above

σ̇(x) = ẋ1 + 2ẋ2 = ẋ1 + 2x1 = 0

Thus, the equivalent dynamics along this surface satisfy ẋ1 = −2x1 and are hence stable.

(iii) We have

σ̇(x) = ẋ1 = 0

The dynamics on this sliding surface would thus be stable, but not asymptotically stable.

(b) According to the lecture slides, the sliding mode control law is

u = −p
TAx

pTB
− µ

pTB
sign(σ(x))

Where the sliding surface is given by

σ(x) = pTx = 0

Thus, in this example we have pT =
[
1 1

]
and

u = −(x1 + x2)− µsign(x1 + x2)

(c) According to the robustness result of the sliding mode controller presented on the lecture, the above
controller will force the system toward the sliding mode if µ is chosen large enough, and if sign(pT B̂) =
sign(pTB), which implies sign(b̂) = sign(b). Since the nominal design has b̂ = 1, we must have

b > 0 (3.16)

It remains to check that the dynamics of the sliding mode remains stable. (Otherwise, we could have a
situation where the controller forces the state onto the sliding mode, but where the sliding mode dynamics
are unstable. The state would then tend toward infinity along the sliding mode.) In this case, we can verify
that on the sliding mode, we have σ̇(x) = 0 for all values of the parameter a.

SOLUTION 9.5

(a) The pendulum energy is given by

E(x) = mgl(1− cos(x1)) +
Jp
2
x22

If the energy of the pendulum hanging downwards is taken to be E(0) = 0, the energy for x1 = π,
x2 = 0 is E0 = 2mgl.
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(b) The time derivative of the Lyapunov function candidate reads

V̇ (x) = 2(E(x)− E0)
d

dt
E(x) =

= 2(E(x)− E0)(−mgl sin(x1)ẋ1 + Jpx2ẋ2) =

= 2(E(x)− E0)(−mlx2 cos(x1)u)

Applying the suggested control, we obtain

V̇ (x) = −2kml(E(x)− E0)
2x2 cos(x1)sign(x2 cos(x1)) ≤ 0

with equality attained for E(x) = E0, or x2 = 0 or x1 = π/2. The only unwanted invariant manifold is
x1 = x2 = 0.

(c) The phase portrait of the closed loop system is shown in Figure 3.8. We notice how the state is driven
to the set E(x) = E0, and that this set contains no stable equilibrium points. Note that the velocity
approaches zero as the pendulum approaches the upright position. Since the equilibrium point is unstable,
and the control for this state is zero, the pendulum does not remain in the upright position.

Extra. Feel free to design a stabilizing controller for the upright position (using, for example the results
from Exercise 12.7). In particular, how should you switch between the two control strategies to make the
system stable? (Some Lyapunov theory will help you on this one)
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Figure 3.8: Phase plane for pendulum under energy control.

SOLUTION 9.6

(a) In steady-state the output reaches π
2 for a = 1 and π

6 for a = 2.

(b) Feedback with k ≫ a gives

ẋ = −a sin(x) + k(r − x) ≈ kr − kx

which is a linear system with static gain = 1.

117



(c) The benefit is that we obtain an almost linear system although the control signals may become large and
the system will be more sensitive to measurement noise.

SOLUTION 9.7

If we use operator notation (such that L, L−1 and N ) operates on the variable to the right, then we can write P
as

P = N + L = (NL−1 + 1)L

the inverse of P can be written as

P−1 = L−1(NL−1 + 1)−1

which is the transfer function shown in the block diagram. A few things to be noted

• The inversion only involves the direct inversion of the linear system which is easy to analyze and com-
pute. A causal and stable inverse of L implies that L is minimum phase.

• If P is not partitioned as above, then we can create our own partitioning as

P = n = n− L︸ ︷︷ ︸
=N

+L

where we can pick our own choice of L. Of course we pick an easily inverted L such as, e.g., L = 1.

• It can be noted that numerical problems might occur, especially in the case of continuous time models
where the partitioning is created as in the item above.

SOLUTION 9.8

(a) The equilibria in the specified region are (0, 0), (1, 0), and (3/25, 88/125). The linearizations are given
by

ż =

(
5 0
0 −3/5

)
z, ż =

(
−5 −5/3
0 11/5

)
z, ż =

(
21/20 −3/4
11/5 0

)
z.

(b) There are no equilibria in the specified region.

(c)

f(x, u) =




5x1(1− x1)−
20x1x2
2 + 10x1

16x1x2
2 + 10x1

− 6x2
10

− x2
2
(1− u)




u = − sgnσ(x) = − sgn(x2 − 1).

(d) The equivalent control ueq ∈ [−1, 1] follows from the equation σ̇(x) = 0, that is,

16x1
2 + 10x1

− 6

10
− 1

2
(1− ueq) = 0,

where we used that x2 = 1 at the sliding mode. Solving for ueq = ueq(x1) and plugging into the system
dynamics yields the sliding dynamics

ẋ1 = 5x1(1− x1)−
20x1

2 + 10x1
.
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It follows from the constraint ueq ∈ [−1, 1] and Equation (3.9) that the sliding mode takes place at
{x : x1 > 3/25, x2 = 0} (compare the phase plane analysis).

The physical interpretation of the sliding mode is that the predator population x2 is kept at the level
α = 1, while only the prey population x1 may change. If the predator population increases above α, it
decreases due to harvest. If the predator population decreases below α, it increases due to the excess of
prey.

SOLUTION 9.9

The system is on the correct form and we can directly use the "recipe" from the lecture slides. Define

f(x) =

[
2x1 − x2

x1

]
, g(x) =

[
1
0

]

Choose σ(x) = pTx such that pT =
[
p1 p2

]
are coefficient of a stable polynomial. For example choose

p1 = p2 = 1 ⇒ σ(x) = x1 + x2. The control law is then given by

u = −p
T f(x)

pT g(x)
− µ

pT g(x)
sign(σ(x)) = −(2x1 − x2 + x1)

1
− µ

1
sign(x1 + x2)

= [µ = 1] = −3x1 + x2 − sign(x1 + x2)

The equivalent control on the sliding surface is when σ(x) = σ̇(x) = 0.

σ̇(x) = ẋ1 + ẋ2 = 2x1 − x2 + ueq + x1 = 0 ⇒
ueq = −3x1 + x2 = −4x1

Dynamics on the sliding surface are

ẋ1 = 2x1 − x2 + ueq = −3x1

ẋ2 = x1 = −x2

Hence on the sliding surface the solution approaches the origin.

SOLUTION 9.10

(a) On the manifold S we have x1 = ax2 = 0 ⇔ x1 = −ax2. Insert into second state equation: ẋ2 =
−ax2

1+a2x2

2

. Hence if a < 0 then unstable, trajectories will go to infinity. If a = 0 then every point on the

manifold is a equilibrium. If a > 0 then stable and trajectories approaches the origin.

(b) Use Lyapunov candidate V (σ) = 1
2σ

2 and design u such that V (σ) is a Lyapunov function.

V̇ (σ) = σσ̇ = σ(ẋ1 + aẋ2)

= σ(−2x1 −
x2

1 + x12
+ u+

ax1
1 + x11

) < 0, ∀σ 6= 0

Choose for example

u = 2x1 +
x2

1 + x12
− ax1

1 + x11
− sign(σ) ⇒

V̇ (σ) = −σsign(σ) < 0, ∀σ 6= 0

Hence the manifold σ = 0 is globally asymptotically stable.
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(c) On the sliding manifold we have

σ(x) = σ̇(x) = 0 ⇒
σ̇(x) = ẋ1 + aẋ2 = −2x1 −

x2
1 + x12

+ ueq +
ax1

1 + x11
= 0 ⇒

ueq = 2x1 +
x2

1 + x12
− ax1

1 + x11

3.10 Solutions to Computer Exercises: Sliding Mode, IMC and Gain schedul-

ing

SOLUTION 10.1

(a) Straightforward manipulations give

G(s) =
K

sT + 1
e−sL =

1

sVm/q(t) + 1
e−sVd/q(t)

(b) The step response gives parameters a = 0.9, L = 1. Using the results from (a) and a = KL/T we
obtain

a = Vd/Vm

L = Vd/q(t)

Since the experiment was performed for q(t) = 1, we see that L = 1/q(t). Now, a gain scheduled PI
controller can be constructed using Ziegler-Nichols recommendations as

Kp = 0.9/a = 1

Ti = 3L = 3/q(t)

(c) One way of implementing the controlled system is shown in Figure 3.9.
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SOLUTION 10.2

As you can see in Figure 3.10 the control signal will be hard on the actuators.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4
On−off control (output)

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1
(control)

Figure 3.10: Bang-bang control

SOLUTION 10.3

The time it will take to reach the sliding surface will depend on µ.

SOLUTION 10.4

Hint: Stop the simulation after a while since it seems like Matlab/Simulink has a problem with small values of
x1 and x2.

3.11 Solutions to Gain scheduling and Lyapunov based methods

SOLUTION 11.1

Intentionally left blank.
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SOLUTION 11.2

(a) With u = −z the x(t) is given by

x(t) =
2x0

(2− x0z20)et + x0z20e−t

which will have finite escape time if x0z20 > 2.

(b) With K = (−1 − 1) we get u = −z1 − z2 − x3

SOLUTION 11.3

For the nominal system we use ψ(x) = −(x31+x1+2x32+x2) and with ρ(x) =
√
x21(1 + x1)2 + x22(1 + x2)2

and k = 0.5 we can use

u = ψ(x)− ρ(x)

1− k
sqn

(
dV

dx
g(x)

)

= −x31 − x1 − 2x32 − x2 − 2ρ(x) sqn (x1 + x2)

SOLUTION 11.4

Left blank

SOLUTION 11.5

Left blank

SOLUTION 11.6

u = (−2x1 − 1)(x21 − x31 + x2)− x1 − (x2 + x21 + x1) (3.17)

SOLUTION 11.7

Left blank

SOLUTION 11.8

Left blank

SOLUTION 11.9

u = −2x21x2 − x21 − (x2 + x21)− x1
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SOLUTION 11.12

(a) Plugging in the transformation and the control law gives

ż =

(
0 1
−1 −2

)
z

Since both eigenvalues of this matrix are −1, the system is asymptotically stable.

(b) Let

k(x) = u(z(x)) = −x1 − 2x2 − 2f(x1)− [x2 + f(x1)]f
′(x1).

From the linear system in (a), we have the Lyapunov function V (z) = zTPz, where P = P T > 0 is the
solution to the Lyapunov equation PA+ATP = −Q. Choosing Q = 2I (the identity matrix) gives

P =

(
3 1
1 1

)

Hence,

V (x) =

(
z1
z2

)T

P

(
z1
z2

)
=

(
x1

x2 + f(x1)

)T (
3 1
1 1

)(
x1

x2 + f(x1)

)
,

which is easily checked to fulfill the conditions for the Lyapunov theorem for global stability (including
V (x) → ∞ as ‖x‖ → ∞).

SOLUTION 11.13

(a) x = (r, ṙ, θ, θ̇)T gives

ẋ =




ẋ1
ẋ2
ẋ3
ẋ4


 =




x2
−g sinx3 − βx2 + x1x

2
4

x4
−2x1x2x4 − gx1 cosx3 + u

x21 + 1




= f(x, u)

(b) f(x0, u0) = 0 gives x0 = (x10, 0, kπ, 0)
T with x10 and u0 being the solutions to the equation gx10 cos kπ =

u0 and k being an integer.

(c) Take x0 = (0, 0, 0, 0)T and u0 = 0. Then,

∂f

∂x
(x0, u0) =




0 1 0 0
0 −β −g 0
0 0 0 1
−g 0 0 0


 ,

∂f

∂u
(x0, u0) =




0
0
0
1


 .

(d) Denote the linearization in (c) by

δẋ = Aδx+Bδu.

Choosing L = (ℓ1, ℓ2, ℓ3, ℓ4) such that the eigenvalues ofA−BL are in the left half-plane gives a control
law u = −Lx, which is stabilizing also for ẋ = f(x, u).
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(e) The system r̈ + βṙ = 0 together with the suggested V (r, ṙ) gives

V (0, 0) = 0

V (r, ṙ) > 0, (r, ṙ) 6= (0, 0)

V̇ (r, ṙ) = −βṙ2 ≤ 0

V (r, ṙ) → ∞, ‖(r, ṙ)‖ → ∞,

and, hence, global stability. Asymptotic stability does not follow because V̇ (r, ṙ) 6< 0 for all (r, ṙ) 6=
(0, 0). (What’s the physical interpretation?)

SOLUTION 11.14

(a) ICTools gives the phase portrait below:

single
solution

phase
portrait stop clear

axes
zoom

in
zoom
out

solver
prefs

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x1

x2

Phase plane

(b)

V̇ =
dV

dx
f(x) =

(
2x1 2x2

)(−x31 + u
x1

)
= −2x41 + 2x1u+ 2x1x2

If we choose u = −x2, then V̇ = −2x41. Hence, x1 will tend to zero. It follows from the equation
ẋ2 = x1 that x2 will tend to a constant x̄2, say. Suppose x̄2 6= 0. Then, ẋ1 = −x31 − x2 implies that
ẋ1 → x̄2 6= 0, which contradicts that x1 → 0. Hence, x̄2 = 0. Global stability follows from that V is
radially unbounded.
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(c) Choosing u = x31 + v gives the system

ẋ1 = v

ẋ2 = x1,

which is globally stabilized, for example, by v = −2x1 − x2. Hence,

u = x31 − 2x1 − x2

is a possible control law.

3.12 Solutions to Feedback linearization

SOLUTION 12.1

The control is given by

u = φ(x1) + ψ(x2)− a1x1 − a2x2 + r.

SOLUTION 12.2

The system is defined by

(∗)





ẋ1 = x21 + x2
ẋ2 = u
y = x1

Change of variables {
z1 = y
z2 = ẏ

giving
ż1 = ẏ = z2

ż2 = ÿ =
d

dt
(ẋ1)

=
d

dt

(
x21 + x2

)

= 2x1ẋ1 + ẋ2 = [from (∗)]
= 2x1

(
x21 + x2

)
+ u

=




(∗) ⇒ x2 = ẋ1 − x21
x1 = y = z1
ẋ1 = ẏ = z2




= 2z1
(
z21 + z2 − z21

)
+ u

= 2z1z2 + u = α(z) + β(z)u

An exact linearization is then

u =
−α(z) + ū

β(z)
= −2z1z2 + ū.
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SOLUTION 12.3

(a) With y = x2.

ẏ = ẋ2 =
√
1 + x1 −

√
1 + x2

ÿ = ẍ2 =
d

dt

(√
1 + x1 −

√
1 + x2

)
=

=
1

2
√
1 + x1

ẋ1 −
1

2
√
1 + x2

ẋ2 = · · · =

=
1

2

(
1√

1 + x1
−

√
1 + x1√
1 + x2

)
+

u

2
√
1 + x1

It follows that the relative degree is 2.

(b,c) Select the states z1 = y, z2 = ẏ ⇒

ż1 = z2

ż2 = /as above/ =
1

2

(
1√

1 + x1
−

√
1 + x1√
1 + x2

)
+

u

2
√
1 + x1

=

=

∣∣∣∣
z1 = y = x2
z2 = ẏ = ẋ2 =

√
1 + x1 −

√
1 + x2

}
⇒
{
x2 = z1√
1 + x1 = z2 +

√
1 + z1

∣∣∣∣ =

=
1

2

(
1

z2 +
√
1 + z1

− z2 +
√
1 + z1√

1 + z1

)
+

1

2

1

z2 +
√
1 + z1

u =

= α(z) + β(z)u

Now choose u = 1
β(z) (ū− α(z)) to obtain a feedback law based achieving an exact linearization.

SOLUTION 12.4

G :

{
ẋ1 = −x1 + 7x2
ẋ2 = −x2 + cosx1 + ω

Desired: u exactly linearizing the system.
Obtained by: u = r − cosx1

SOLUTION 12.5

u = −y4 + y2 + r = −x41 + x21 + r

SOLUTION 12.7

(a) We notice that all state equation but the last one are linear. The last state equation reads

ẋn = f(x) + g(x)u

If we assume that g(x) 6= 0 for all x, we can apply the control

u = h(x, v) =
1

g(x)
(−f(x) + Lx+ v)

127



renders the last state equation linear

ẋn = Lx+ v

The response from v to x is linear, and the closed loop dynamics is given by

ẋ =




0 1 0 0 0
0 0 1 0 . . .

0 0 0
. . . 0

l1 l2 l3 . . . ln


x+




0
0
...
1


 v

(You may recognize this as the controller form from the basic control course). For the control to be well
defined, we must require that g(x) 6= 0 for all x.

(b) The above procedure suggest the control

u =
1

b cos(x1)
(−a sin(x1) + l1x1 + l2x2 + v)

which results in the closed loop system

ẋ =

[
0 1
l1 l2

]
x+

[
0
1

]
v

The system matrix has a double eigenvalue in s = −1 if we let

l1 = −1, l2 = −2

The control law is well defined for x1 6= π/2. This corresponds to the pendulum being horizontal. For
x1 = π/2, u has no influence on the system. Notice how the control “blows up” nearby this singularity.
Extra. You may want to verify by simulations the behavior of the modified control

u = sat(h(x, v))

for different values of the saturation level.

(c) The above procedure suggest the control

u = −x2 − x+ v

Letting v = 0, we apply the control to the perturbed system

ẋ = (1 + ǫ)x2 − x2 − x = ǫx2 − x

and note that for x > 1/ǫ, we have ẋ > 0, which implies that the trajectories tend to infinity. Thus,
global cancellation is non-robust in the sense that it may require a very precise mathematical model.
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3.13 Solutions to Optimal Control

SOLUTION 13.3

Note that L = 0. We have

H = λ1x3 + λ2x4 + λ3α cosu+ λ4(α sinu− g)

Minimizing H wrt u gives

tanu =
λ4
λ3

The adjoint equations are

λ̇1 = 0

λ̇2 = 0

λ̇3 = −λ1
λ̇4 = −λ2

This gives λ3(t) = Ct+D and λ4 = At+B for some constants A,B,C,D.
How could one determine A,B,C,D? They of course depend on φ and ψ. The optimal trajectories can be

generated by ẋ = f(x, u∗), and one chooses the trajectory that satisfies the boundary conditions on x and λ at
t = tf . It is generally a hard problem.

SOLUTION 13.6

a) We have L = 1, φ = 0, ψ(tf ) = (x1(tf ), x2(tf ))
T = (0, 0)T and tf free. We get

H = n0 + λ1x2 + λ2u

Hence

u(t) =





1 λ2(t) < 0
? λ2(t) = 0
−1 λ2(t) > 0

The adjoint equations are

λ̇1 = 0

λ̇2 = λ1

This gives λ1 = µ1, λ2(t) = µ1t+B. Now µ1 = B = 0 is impossible since this leads to n0 = 0 (since
we should have H ≡ 0), and we can not have [n0 µ1 µ2] = 0. Therefore λ2(t) is linear and nonzero.
This shows a).

b) We know that u = ±1 with at most one switch. The simplest way to get σ(x) (note that σ should be a
function of x not of t) is to solve the equations for such input signals. For u(t) = 1 we get

x1 + C1 = x22/2

This gives the phase plane in the figure For u = −1 we get

x1 + C2 = −x22/2

This gives the phase plane in the figure Now we know that we get to the origin with u = ±1 with at
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Figure 3.11: Phase plane for u = 1

most one switch. Consider especially the two curves for u = ±1 that pass through the origin. From the
plots we see that the control law is given by

u(t) = −sign
{
x1(t) +

1

2
sign{x2(t)}x22(t)

}

since then u(t) = −1 above the switch curve and u(t) = 1 below it.

SOLUTION 13.11

H = n0P + λP − λT

Adjoint equation λ̇T = −Hx

λ̇1 = λ1, λ1(1) = µ1

Solution
λ(t) = µ1e

t−1

H = (n0 + µ1e
t−1)︸ ︷︷ ︸

σ(t)

P − λT

P ∗(t) =

{
0, σ(t) > 0
Pmax, σ(t) < 0

µ1 < 0 ⇒ σ(t) decreasing

Hence

P ∗(t) =

{
0, 0 ≤ t ≤ t1
Pmax, t1 < t ≤ 1

Time t1 is given by

1 = T (1) =

∫ T

t1

e−(t−τ)Pmax dτ
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Figure 3.12: Phase plane for u = −1

Has solution t1 ≤ 1 if

Pmax ≥ 1

1− e−1

SOLUTION 13.12

(a)

H = L+ λT f =
1

2
xTQx+

1

2
uTRu+ λT (Ax+Bu)

(b)

λ̇(t) = −∂H
T

∂x
(x∗(t), u∗(t), λ(t)) = −Qx∗(t)−ATλ(t)

with

λ(tf ) =
∂φT

∂x
(x∗(tf )) = 0

(c) Since H is a quadratic form in u and there is no constraints on u, the minimum is given by the solution
to

0 =
∂H

∂u
= Ru+BTλ,

which hence gives u = R−1BTλ.

(d) Combining
λ̇(t) = Ṡ(t)x(t) + S(t)[Ax∗(t)−BR−1BTS(t)x∗(t)]

and
λ̇(t) = −Qx∗(t)−ATλ(t) = −Qx∗(t)−ATS(t)x∗(t)

gives the result.

(e) For tf = ∞ we may set Ṡ = 0. Then, the differential equation in S(t) becomes an algebraic equation in
the (constant) matrix S:

ATS + SA− SBR−1BTS +Q = 0

See Lecture 13.
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Figure 3.13: Phase plane with switching curve

(f)

dH

dt
=
∂H

∂x
ẋ+

∂H

∂u
u̇+

∂H

∂λ
λ̇ =

∂H

∂x
f − fT

∂H

∂x
= 0

SOLUTION 13.13

See the minimum-time control example in Lecture 13. From that it follows that the optimal control is given by
u∗(t) = −C sgnλ2(t) = C sgn(c1t− c2) Hence, p(t) = c1t− c2 is a first-order polynomial.

SOLUTION 13.14

The system is minimal, so a unique positive definite solution of the Algebraic Riccatti Equation (ARE) will
exist. With

Q =

[
5
2 0
0 0

]
, R = 2

the ARE
−ATP − PA+ PBR−1BTP −Q = 0

gives the system 



0 = −5
2 − 2P12 +

1
2P

2
12

0 = −P22 − P11 + P12 +
1
2P12P22

0 = −2P12 + 2P22 +
1
2P

2
22

with the positive definite solution

P =

[
2 + 3

√
6 5

5 −2 + 2
√
6

]
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and the optimal control u = −5
2x1 + (1−

√
6)x2

3.14 Solutions to Fuzzy control

SOLUTION 14.1
NL NS ZE PS PL

NL PL PL PM PS ZE
NS PL PM PS ZE NS
ZE PM PS ZE NS NM
PS PS ZE NS NM NL
PL ZE NS NM NL NL
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