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Abstract

Causal single input single output linear time invarianttsys are considered. Expressions for the
asymptotic (co)variance of system properties estimatéugube prediction error method are derived.
These expressions delineate the impacts of model stryatuvdel order, true system dynamics, and
experimental conditions. A connection to recent resultsrequency function estimation is established.
Also, simple model structure independent upper boundssieblkshed. These bounds are shown to be
significantly more accurate than what is obtained using e olassic asymptotic (in model order)
variance formulan ¢, (w)/®,(w) (with m being model orderp,, input spectrum an@,, noise spectrum)
for frequency function estimates. Explicit variance exggsiens and bounds are provided for common
system properties such as impulse response coefficientsamaohinimum phase zeros. As an illustration
of the insights the expressions provide, they are used tgedeonditions on the input spectrum which
makes the asymptotic variance of non-minimum zero estsnatdependent of the model order and

model structure.

. INTRODUCTION

In system identification, as in all types of modeling, it ispontant to be able to assess
the model error. Different assumptions on the system anchtiee lead to different ways to
guantify the model error, see [24]. Assuming the noise totbehastic and that the system can
be described by a model within the used model set leads to @uemtification using confidence

ellipsoids based on the asymptotic covariance matrix ofpdn@meter estimates [19]. Recently
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also techniques for non-asymptotic confidence regions baen developed [3, 4, 2]. In this
contribution, though, we will focus on the traditional agyetic covariance matrix which in
many cases give reliable information of the model error Y8 will consider prediction error
identification of causal single-input single-output (S)S@ite dimensional linear time invariant
(LTI) systems. The unknown system parameters will be dehbted = [0, --- 0,] € R*"
(vectors will be taken as row vectors), witli denoting the true value (we will assume that
the true system is in the model class). We will assume that [58] for exact conditions) the
parameter estimat®y € R'*" has the property that the (normalized) model ew/dTv’(éN —6°)

becomes normally distributed as the sample sizef the data set grows to infinity
VN (éN _ 90) € AsN (0, AsCov éN) )

The asymptotic covariance matrixsCov 6y of the limit distribution is a measure of the model
accuracy. This is reinforced by that, under mild additioc@ahditions [19],

lim N - E [(é]\[ —EéN)T(éN —EéN)] :ASCOVéN

N—oo
Under the assumptions above
. 1 [ . . -t

AsCov by = [%/ LP(er)g[/*(elw)dw} (2)
where? : C — C™*? is the gradient of the one-step ahead output predictor amdernduperscript
* denotes complex conjugate transpose. We will (8e/) to denote the integral on the right-
hand side of (2) in the following. However, our interest wilbt be the model parametefs
themselves but some “system theoretic” quantity. We willsiech a quantity be represented by
a differentiable function/ : R — C!*» for some integep > 1. Given an estimaté of 6°,
a natural estimate of (¢°) is J(y). Using Gauss’ approximation formula and (2), it can be

shown [19], that the asymptotic covariancel(ﬁN) is given by
AsCov J(Oy) = AT [(w,w)] "' 4

where A is the derivativeAd := J'(6°) € C"*P. We shall be slightly more general and allow
cases wheréV, ) is singular anddefine

AsCov J(Oy) = AT [(w,w)] A (3)
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The motivation for using the Moore-Penrose pseudo-inv[i{ss,ep)]T stems from that this gives
the correct variance for properties that are uniquely ddfimg the data even if the parameter
estimate is non-unique. We refer to [11, 32] for details.

When the model structure, the true system and the experanemhditions (such as whether
the system is operating in open or closed loop) are knows, striaightforward to compute (3)
numerically. However, such a procedure typically reveittle lin terms of how system properties
and design variables (model order, model structure, exygarial conditions etc.), influence the
asymptotic covariance. In [12] (see also [13]), a geomedpproach is used to re-express (3)
in a form more tangible for interpretation. The use of thehtegue is illustrated by analyzing
the impact system complexity, additional inputs and addal sensors have on the asymptotic
covariance. Our work is based on this idea and we will derk@ressions for (3) for a class of
system properties including frequency responses, impaggonse coefficients, poles and zeros,
and system norms.

A case that has attracted significant interest in the pasteissériance of frequency function

estimates? (¢l ). For the prediction error method it was shown in [18] that

lim iAs\/'aer(ej“’,9]\;) _ Bule)

m—oo 1M, o, (elw)

(4)

wherem is the model order an@, and @, are the spectral densities of the input signal and
noise, respectively. This simple and elegant expressibithws valid for open loop identification,
revealed that for large model orders, the accuracy of thguérecy function estimate does not
depend on the model structure or the number of the estimatseters, but only the model
order m (which may be different from the number of estimated parans¢t Furthermore, it
shows that the accuracy of the frequency function estintaagoarticular frequency only depends
on the input and noise spectrum at that particular frequeviayous refinements can be found
in [35, 36, 26, 15, 9].

The frequency function result in [18] also covered closempl@dentification using input and
output measurements as data, and was extended to somatalterciosed loop identification
methods in [8]. Quantifications exact for finite model ordeese presented in [27]. The asymp-

totic covariance of the parameter estimates for Box-Jenkiadels were studied in [5] for a range

When J is a scalar we use asymptotic variandeVar, as terminology for (3).
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of different closed loop identification methods and fronstsiudy it is known that knowledge of
the noise model maximizes the accuracy of the system pagasn€uantification of frequency
response errors still receives significant interest andesadudlitional contributions are [31, 1, 3].

Parallel to the interest in the accuracy of frequency resp@stimates, there has been a series
of results regarding the accuracy of estimatesh-minimum phasé@\NMP) zeros and unstable
poles, the interest arising due to the importance of sucbszand poles in control. For poles
and zeros of magnitude larger than one, the main conclusidhat the asymptotic variance
approaches #nite limit as the model order tends to infinity [17, 23].

A related and very interesting contribution is the recenpgua[7] where conditions are
established for the minimum degree of richness of the etwitaequired for the information

matrix (¥, ¥) to be non-singular.

Contributions and outline

As pointed out in [12], the geometric approach has its origif26], where exact expressions
for the asymptotic variance of frequency function estimdte LTI models were derived using
the theory of reproducing kernels; a theory which is basedodhogonal projections. Our
contribution to the characterization of the variance efarestimates of LTI systems can be
seen as an extension of the work in [26] to general systemeptiep./, using new techniques
which deepens the geometrical interpretation of (3) itetlan [26]. As a result, our contributions
provides an alternative system theoretic interpretatibthe results in [26], see Section IV-A,
thus furthering the understanding of frequency functiomesion.

More precisely, the contributions of this paper are:

i) Section Il: Re-parametrization formula&Ve provide formulae for re-expressing (3) when
the quantity of interest is parametrized in other pararsetigan those used in the system
identification. These expressions are useful when compatifferent model parametriza-
tions in terms of the asymptotic variance they yield for tiséineate of a specific system
property.

i) Section Ill: A general characterization of (3) for Linear Time InvariasystemsHere we
provide general formulas, and bounds, for (3), valid fofedént experimental conditions

and model parametrizations.
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iii) Section IV: Expressions for the asymptotic variance for some propedfdTI system3aie
provide expressions and upper bounds for the asymptotianae of estimated frequency
functions, NMP-zeros{,-gains and impulse response coefficients.

iv) Model structure independent upper bounds for @).present there is surprisingly little
in terms of rules of thumbs available regarding model qualit system identification;
the expression (4) for the variance of the frequency functeestimate and some similar
variance expressions for pole/zero estimates, being &wosp Thus determining suitable
experiment length and excitation in order to achieve a ceeecuracy of, for example, an
impulse response coefficient or an estimate of4hgain of the system, requires extensive
calculations based on (3). A spin-off of our new expression(B) is that it is easy to
provide simple model structure independent upper boundg§3jo We hope this to be of

value to practitioners.

A preliminary version of this paper has appeared as [21].

NOTATION
For functionsf : C — C™™, f*(z) = (f(2))*, the complex conjugate transpose fif:),
f*(z7) denotesf*(z)|,-—.— and f~(z) and f~(z™) denote(f~1(z))* and (f~1(z))*

respectively. On the unit circlg*(z™) = f*(z) and when the elements ¢f are real rational,

Z*:Zil)

it holds that f*(»7*) = f7(2~'). We will consider vector valued complex functions as row
vectors and the inner product of two such functighg : C — C**™ is defined as(f,g) =
[ f(e)g*(e)dw. When f and g are matrix-valued functions, we will still use the notation
(f,g) todenote, ["_f(c™)g*(e!*)dw whenever the dimensions gfandg are compatible. When
W(w) m x m is a positive definite hermitian matrix, th&)-norm of f : C — C™*™ is given
by ||fllw = «/Tr (fW, f) whereTr denotes the Trace operator. WhBn = I (the identity),
we write || f|| and denote this th&,-norm of f. The spacel;*™ consists of all functions
f: C — C™™ such that||f|| < oo and whenn = 1, the notation is simplified taC}". For
f:C — Cv™m f . C — C™m denotes theth row of f. If ¥ € £3*™ for some positive
integersn andm, thenSy denotes the subspace £g' generated by the span of the rowsvof
HE is defined as the subspace & that consists of alC7'-functions that are analytic outside
the unit circle. Suppose thgte £5°™ and thatS C L7, then the rows off := Ps{f} consists
of the orthogonal projection o8 of the corresponding rows of.
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9fi(x)

For a differentiable functiorf : R — C"?, f'(z,) is an x p matrix with %=

as

T=x,

ijth entry, the partial derivativggi—f) is defined analogously.
The Moore-Penrose pseudo-inverse of a matriis denotedA'.

[I. TECHNICAL PRELIMINARIES

Often the quantity/ of interest can be expressed in terms of some generic systeampters,
such as the impulse response coefficients in case of LTIrmsgstim this section we will provide
a lemma which facilitates the comparison of the asymptadigavnice (3) for such quantities for

different model structures.

A. Re-parametrization

Our results are based on the following theorem.

Theorem 1.1 (Theorem I1.5 in [12]) Suppose that/ : RY*" — C'*? is differentiable and let
the asymptotic covariance matrixsCov J(dy) be defined by (3) wheng € £3*™. Suppose
thaty € £5*™ is such that

A= (¥,7) (5)
then
AsCov J(Oy) = (Ps, {7}, Ps,{7})" ()
In particular, when.J is scalar,
AsVar J(0y) = |[Ps, {7} (7)

There is a large freedom in the choiceofin Lemma I1.8 in [12] it is shown that all solutions
v € LE™ to the equationl = (¥, ~) are given by
v =AW+ s (8)
wheres* is any £5*™-function orthogonal t&;. We will explore this degree of freedom in the
next lemma, where a reparametrizationJgt)) is used to find an expression forathat fulfills
the condition (5).
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Lemma I1.2. Let¥ € £y*™ and letr : R™™ — C'*"~ for somen, € {1,2,...,00}, where
the elementsy(6), £ = 1,...,n, are differentiable. Suppose that there exists some fumctio
W : C — C™™ such that

nr

U(2)W(z) = Y 74(6°) Te(z) € L3 (9)

k=1
for some orthonormali'-functions{7,},” ;.
Let J : R — C'*? be differentiable, with/(6) defined by

J(0) = J-(7(0)) (10)
for some function/, for which the partial derivatives with respect tp, £k = 1,...,n, exists at
0° and satisfy

R S aJT(T(HO)) ' pXm
VI, (2) := ; ( o Ti(2) € LD (11)
Suppose tha/, and 7 are such that the chain rule applies:
, oy 0J2(7(6°))
0\ _ oy ZYT\"\" /) 12
J(6°) ;mw) e (12)

and assume thdt’ and V.J, are such that
Y(2) = VI ()W (27) € LT (13)
Then(5)+6) hold with this~.
Proof: All that has to be proven is that (5) holds withas in (13). First notice that
(W(2),7(2)) = (¥ (2), V()W (z7)) = (YW, V)

and from (9)—(11) and the orthonormality ¢} it follows that

S 9J:(7(6°))
_ !/ (no
W,V =30 o
which according to the assumption (12), equélg”’) =: A. [ ]

We remark that (12) is satisfied if. and 7 both are Fréchet differentiable, see, e.g., [20].
However, it is often straightforward to verify (12) directMWe will defer further discussion of
this result to Section I1I-B where Lemma 1l.2 is used to deran asymptotic variance expression

applicable when the underlying system is single-input Iskogitput linear time invariant.
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The next result is Lemma 11.9 in [12] adapted to the re-patazetion in Lemma 11.2.

Lemma I1.3. Consider the assumptions in Lemma 11.2 and{IB}. };_,, < n, be an orthonor-

mal basis forSy. Assume also that

9.J-(7(6°))
aTk

for somea € C™*? and z, € C, and lety be defined by13).
Then

= Ti(2)x

Ps, {7} = a"W*(z,) ) Bi(z) By

k=1
and

<P8w{7}7 PSW{’Y}>
='W (2) Y Bi(20) Br(20)W (20)x

Furthermore

(@, 7) = ¥ (2)W(z0)

Proof: We start with proving (17). Sincé = Q21" with I = [B], . ..

(2, it is sufficient to prove that
(Br,v) = Bp(zo)W(20)a, k=1,....r

With ~ as in (13) with (14) it holds

(Bi) = S (B TW) Tiz,) a

=1

— i(BkW, 7)) Ti(z) a = Py{ByW}(z,) @

=1

(14)

(15)

(16)

(17)

, BT for some matrix

where ) is the space spanned H¥,};'",. However, due to (9)5,W € Y for k=1,...,n so

the projection can be removed giving (17).

Inserting (17) (which we just proved) in

Ps {7} = Z<% By.) By,
k=1
proves (15).
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Finally, the result (16) is immediate from (15) using thehoriormality of theB;’s. [ ]
Remark:Notice that under the conditions in Lemma 1.3, the condittbat V.J,1W*(z7) €

L£5*™ in (13) can be written as
0" 3T () Tle) W) € L5
k=1

This may restrict the set of pointg € C for which Lemma 11.3 is applicable whemn, = +occ.

In Sections IV-A and IV-B we will provide examples when (14)ldts.

B. Orthonormal basis functions

Lemma 1.3 shows that when an orthonormal basisSgiis available, it is sometimes possible
to express the asymptotic variance explicitly (withouthortormalization using, e.g., Gram-

Schmidt). A well known case [25] is when
271 g2 z=m
S@—Span{m,m,...,m} (18)
whereL, (z) = [Ti_, (1 —&=21), |&| < 1 for some set of specified pol€s;, ..., &, } and where

m > n. Then, it holds that
Sy = Span{By,..., B}

where{B;} are the Takenaka-Malmquist functions given by

Bi(z) = 76:‘(5'2 CDpi(2), k=1,....m (19)
y 1—¢&2

Ou(z) =] — By(z) =1 (20)
=1 © TS

and with¢é, = 0 for k = n+1,...,m. In [26] it is shown that the structure (18) holds for
common model structures such as Output-Error and Box-deniiovided the input spectrum
has no zeros and sufficiently many numerator coefficientgstienated. It is worth noticing that

the system zeros do not affect the basis functions above.

[1l. SISO LTI SYSTEMS

In this section we will apply the results in Section Il to the@deling of causal finite dimen-

sional SISO linear time invariant (LTI) systems.
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Ut
Ly R(q) L p@—p| Golq) »é ey

Figure 1. Block diagram of SISO LTI system with output feeclba

A. System and model assumptions

Throughout the paper we will assume that the true systemvendby a causal finite dimen-
sional SISO LTI systend,(q) (q is the forward shift operator) depicted in Figure 1 wherand
y, represent the measured input and output, respectivelyiewhend w; are zero mean white
noise sequences with variangg and 1, respectively. The causal finite dimensional LTI filter
represents a stable minimum phase spectral factor of taeerefe signat,, andH, is an inversely
stable finite dimensional LTI filter that is normalized to bemrc, i.e.,lim, .., H,(z) = 1. The
system(, includes at least one unit time delay, so that the feedbaaf i® well defined, and
we also assume the entire system to be internally stabibyetie causal finite dimensional LTI
controller K. Furthermore, we will assume that neiti@s nor K have poles on the unit circle.
The system is said to be operated in open loop wRes 0. Next, we introduce a quite general
family of model structures that will be covered.

The system is modeled by

Yt = T(Qa 9)Xt7 Xt = [Ut, €t]T (21)

where T'(q,6) = [G(q,8), H(q,0)] is a causal finite dimensional LTI model of the system
and the noise dynamics, parametrized by the vegter R'*". The noise model may also be
independently parametrized by a separate vegt@nd then we write (q, n). This distinction

is only used when it has important implications and for theegal treatment we can consider

the noise modeH (q, 6).
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The model parametrization is such that thge system is in the model set, that is, there is a,

not necessarily unique, paramet€rsuch that

Go(q) = G(q,0°), Ho(q) = H(q,0°)

The modelT'(z,0) is continuously differentiable with respect toin a neighborhood of”°.
The type of model described above includes all standarckddag model structures such as
ARMAX, output error and Box-Jenkins.

Now, introduce the spectral factor of the signal-to-noistor

Rswa(2) = Ry(2) R, (2)

(%

where R, = /A, H, is a stable minimum phase spectral factor of the noise spucfr, and

where R, is a stable spectral factor of the spectrdm of y, i.e.

R L SOR _KSOHO 1 0 22
X " 0 1 [0 \/E} ( )

where S,(q) = 1/(1 + K(q)G,(q)) is the closed loop sensitivity function. It is straightf@md
to show that the predictor gradient, normalized 1B/, is given by

WU(z) =T'(2,0°)Rsnr(2) (23)

whereT"(z,0) = |2420) %].

We will assume that the model parametrization is such#hatstable. The stability assumption
on the closed loop system and the assumption&oand K imply that Rsys(z) and its inverse
are real rational functions without poles on the unit cirafel hence ar€3** functions, as well
as bounded on the unit circle.

Our main assumption is that prediction error identificatiesults in an asymptotic covariance
AsCov J (éN) of the quantity of interest given by (3). We refer to [19] for exact conditions

and to [11] for a discussion of the case wh#nis non-unique and¥, ¥) singular.

B. Asymptotic covariance of LTI system properties

In this section we will derive an expression for the asymiptobvariance (3) of the estimate
J(éN) of an arbitrary differentiable quantity : R'*"» — C'*? when¥ in (3) is given by (23).

While this can be done on a case by case basis for differenehstdictures using Theorem
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1.1, we will instead use (a generalization of) impulse @sge coefficients as an intermediate
parametrization in order to, through Lemma 11.2, obtain gpression that is valid regardless of
the model structure.

Take {Gi(2)}r2, and {H.(z)}2, to be two sequences of orthonorm@l-functions and for

k=1,2, ... define the orthonormal functions
%k_l(z) = [Qk(z) 0], ,TQk(Z) == [0 Hk(z)], k= 1,2, Ce (24)

With 7 = [, 7 ---], any transfer functiorl” = [G H] satisfying the assumptions in Section

[lI-A can be represented by
T(2) =[G(z) H(z)]=> 7 Ti(2) (25)
k=1

on the unit circle, for suitable choices ¢, (z)}, and{Hx(z)}32,. It is worth noticing that
also (casual) unstablé can be represented by (25) on the unit circle and that with) =
Hy(2) = z~*=1, (25) corresponds to the usual impulse response repréisenta

Also the original model (21), which is parametrized by theteed, can be expressed through

the parametrization (25):

T(2,60) =Y 7(0)Ti(2) (26)
k=1
or
G(2,0) = gu(0)Gi(2), H(z,0) = hi(0)Hx(2)
k=1 k=1

where g, = 7,1, hr = . We will denote byr° the model parameters corresponding/to
i.e. 70 =T7(0°).

We will first establish some properties of the maps R¥*" — C, k=1,....

Lemma I11.1. Under the assumptions in Section IlI-A,(#), k£ = 1,... are differentiable a®®

and
T'(2,6°) = Y 1 (0°)Ta(2) € L5 (27)
k=1

Proof: By assumption, the elements 6f z, 0) are finite dimensional real rational functions
with no poles on the unit circle, i.e. they can be writtenéz,0)/A;(z,0), i = 1,2 for some

polynomialsB; and A; with real coefficients wherel;(z, 6°), i = 1,2, does not have any roots
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on the unit circle. Thu§'(z, 6°) belongs tol% and hence;, can be expressed through the inverse

transformation
T6(0°) = (T'(2,60°), Ti(2)) (28)

By assumptioril’(z, #) is continuously differentiable with respect #oin a neighborhood 06°
and hence the right hand side of (28) is differentiabl¢’atith derivative given by differentiation
under the integral sign [30, Theorem 9.42]. Thus

7.(0°) = (T"(2,0°), Tu(2)), k=1,... (29)
Now the elements of’(z, 6°) are given by
Bi(2,0°)/Ai(2,0°) — Bi(2,0°)Al(2,0°)/A2(2,6°), i = 1,2

and since by assumptiofy(z, 6°), i = 1,2 does not have any poles on the unit cird¥z, 6°) €

L£3. But then (29) are the Fourier coefficients™®f z, 6°) and (27) follows. We remark thdt7; }

does not necessarily have to be an orthonormal basi§olf this is not the case we can adjoin
orthonormal functions td7,} so that it becomes a basis and reason as above. However since
the 7,’'s corresponding to the added basis functions are idehtizalo their derivatives will be

zero and the corresponding terms will not show up in (27). [ |

~

Theorem I11.2. Suppose that, (%) € C'** is estimated by/(0y) = .J,(7(0x)).
Assume that

i) The system and model assumptions in Section IlI-A hold.

i) The partial derivatives of/, with respect tor,, £ = 1,...,n, exists atd° and satisfy

VI (z) == ZT (&]52-0)> Te(2) € L™ (30)

k=1

iii) The chain rule(12) applies.
Then

AsCov J(0y)
— (Ps, {VJ: Riw} , Ps, {VJ, Roied )" (31)
When. is scalar,(31) becomes

AsVar J(0y) = |Ps, {VJ; RS_:JR}H2
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Proof: The result follows from Lemma 1.2 withV = Rl (z) if the conditions of this
lemma can be verified. First it follows from Lemma I11.1 th&{6°) exists fork = 1,.... Next,

with ¥ as in (23) we get
W (2) Rowal2) = T'(2,0°)
and from Lemma Ill.1 we have that
T'(z,0°) = ing(m Ti(z) € Ly
k=1

so (9) is verified. Furthermore, (11) and (12) follows digétom Assumptions ii) and iii) in the
theorem. Finally (13) follows from Assumption ii) in the tvem and thatz_, (=) is bounded
on the unit circle by the assumptions in Section IlI-A. Allntbtions of Lemma 1.2 have now
been verified and the result follows. [ |
The result in Theorem 1l1.2 is basically applicable whendhe predictor gradient is given by
(23) and thus very general. Thus the expression (31) is art expresentation of the asymptotic
variance (3) which is valid for a wide range of LTI model stwes, including commonly used
structures such as ARMAX, output-error and Box-Jenkingl &rcan be used for both open
loop and closed loop identification. Furthermore it expeesthe variance of any property of the
estimated model, (provided this property can be expressed d@ifferentiable function of the
(impulse response) coefficients satisfying the conditions in the theorem).
Remarks:
1) The property of interest enters the expression only tmothe functionV.J, which in
some sense describes the sensitivity of the propérty changes in the transfer function
T. One could interpreV.J, as something similar to a derivative/, ~ AJ/AT.
2) VJ. is weighted by R (>~) which is a spectral factor of the ratib,(z)$,'(z). This

ratio is known from the expression

lim — AsCov T(e, ) = @, ()8, () (32)

m—oo M,
derived in [18] and can be interpreted as the frequency-wisse to signal ratio.

3) The spaceSy is the span of the rows of

U (z) = T'(2,0°) Reual2) = T'(2,0°) Ry (2) R, (2)

(%
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The structure of this space is thus to a large extent detexdnby the model structure
(throughT”). However, the true system also determifiés:, 6°) (through6®) and together
with the experimental conditions also acts as translatiwough the facto?, (z) R, (z).

From the observations above we see that there is a certamuplaty between different
guantities: The function of interest influences only thection that is projected and the model
structure influences only the subspace on which the funasigamojected. However, the experi-
mental conditions are present both in the function to beggtegd and the subspace.

We also remark that Theorem 111.2 illustrates the flexipilaffered by (8). The function
VJ.(2) Rgin(27) is a function in the set (8) of functiong that can be used in Theorem 1.1
such that(¥, v) is the sensitivity of the quantity of interest with respextiie model parameters
(this is the essence of Lemma I.2 and Theorem I111.2). Howetés function is chosen with care
so that it can be used regardless of the model structure lwdetermines’”(z, 6°)). It is due
to this that the decoupling between the function of inteeexl the model structure, discussed
above, is obtained. As we will see in Section IlI-E, this atgens up the possibility to derive
upper bounds for the asymptotic variance that are modettsiiel independent. This is one of
the features offered by the geometric approach employetlisnpaper. For further discussion

on the geometric approach we refer to the companion papér [12

C. Some special cases whéns scalar

Below we will consider some special cases that lead to sfiogiions of (31). First we need

to separate the two columns of the mat¥i¥, as

VI(2) = |VI(z) V()]

VJf(z):Z<aJ( )) Gr(2)

—1 G
hy oy (0] (T)\" B
m(@-é( Ly )m()

and for simplicity we consider the case whérand ./, are scalars for which case alS&¢ and

VJ! are scalars.

Corollary I11.3 (Simplifications of Theorem Ill.2)Under the assumptions in Theorem Ill.2 we

have the following special cases for scalar functiohs
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1) J independent of noise model H:

WhenJ does not depend on the noise modgl the asymptotic variance oI(éN) is given

by

AsVar J(fy) = HPSW {wg [\/SA_}f 0} }H2 (33)

2) Open loop operation:

WhenK = 0 the asymptotic variance of(dy) is given by
AsVar J(0y) = HPSW{ [ng% VJfHﬂ }H2 (34)

FurthermoreSy is the span of the rows of
{G,(Z,GO)R(Z) H’(z,@o)]
VAH,(2) 7 Ho(2)

3) Open loop and independent parametrization:

WhenK = 0 and the model+(z, ¢) and the noise modé¥ (z, ) are independently parametrized,

the asymptotic variance of(Ay, 7y) is given by

AsVar J(Oy, fiy) =

« ) ||2 2
= [Ps.{ e} + |Ps vrm } | (35)

whereV, = R(2)G'(z,0°)/H,(z) and¥,, = H'(z,n,)/H,(z), respectively.
Proof: The proofs are straightforward and therefore omitted. [ ]

Remarks:

1) We noted earlier that the weightingg,.(z) appearing in (31) is a spectral factor of
®,(2)P*(z). The upper left corner of this ratio is given &, /¥, whered;, denotes the
spectrum of the contribution of to «. When we only consider properties of the model
G (and notH) only this ratio matters and{}/(S’R*) in (33) is a spectral factor of this
ratio.

2) Notice that scalings in the input amplitude only affedte tveightingy/\,H,/R in (35)
and not the spac8y since the span of is unaffected by frequency independent scalings

factors.
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D. An explicit expression of the asymptotic variance

The most complicated step of evaluating the variance egmeg31) is the projection onto
the spaceSy. If an orthonormal basi§5;(z)},_, of Sy is known, then as shown in [12] the

projection can be computed from

n

PsAf} =) (f.Bu)Bs

k=1
For some propertied, the asymptotic variance (31) can be expressed directlyfaadion of

an orthonormal basis for the spaSg.

Theorem [11.4. Let the assumptions in Section IlI-A be in force. Suppose tha
A=T'(2,,0%)« (36)
holds for some,, € C and somex € C2*?, then the asymptotic covariance can be expressed as

AsCov J(Oy) =

0T Rz) Y B o B ) Ro(ea) @)
k=1

where{B;}}_, is any orthonormal basis for the spacg.
The result(37) also holds under the conditions of Theorem Il1.2 if, in aduoht the condition

0J-(7)

aTk = %(Zo)a (38)

T=7(6°)

holds for somex € C?*? and z, € C.

Proof: The relation (36) implies thatl = ¥(z,) Rgx(z,) and then Lemma 11.9 in [12]
gives (37).
Next, from (38) follows that

o0

VJ: Rir(20) = Z (20) T Rir(20)

k=1
and now Lemma I1.3 gives (37). [ |
Conditions (38) and (36) for Theorem l1l1.4 are closely rethtCondition (38) can be formu-
lated as

aJ-(1) 8T(zo,7)a
8Tk N aTk
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while condition (36) can be formulated as

0J(9) _ 9T(20,0)
o6, 00,

and we see that the only difference lies in the parametazadind that it does not matter if the

system and the property are described by the model parametgia the by the coefficients

of the rational orthonormal basis representation.

E. Upper bounds

One advantage with the new expression (31) for the asynepatotiariance (3) is that it is easy
to provide simple, model structure independent, boundg3prThese bounds are obtained by
replacing the projection ont§; with projections onto the spacés; or £2, giving upper bounds
for (3). When we are projecting of2, i.e. when the projection is removed, the bounds derived
below are typically conservative even as the model ordereases sincé, C Hj' regardless
of the model order and model structure, while the functiat th projectedV./. R ., typically

has a term that belongs to the complementf.

Theorem I11.5. Let the conditions of Theorem II1.2 be fulfilled. An upper hdwof the asymptotic
covariance ofJ(dy) is then given by

AsCov J(Oy) < (VJ, 0,8, VJ,)T (39)
When.J is scalar we get
AsVar J(O) < IV 15,00 (40)

Proof: By removing the projection in (31) of Theorem IIl.2 we get gopar bound, c.f.
Lemma I1.6 in [12]. [ |
We remark that the bounds in Theorem III.5 typically (but abwvays) throughV.J. and
Rzl (z) depend on the true underlying system.
Before discussing the expression (40) we also present twoiapcases that simplify the

expression further.

Corollary I11.6 (Simplifications of Theorem Ill.5)Under the assumptions in Theorem Il.5 we

have the following simplifying special cases:
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1) Independent of noise model H:
When the property does not depend on the noise modklthe upper bound40) is given

by
AsVar J(Oy) < V2|13, o (41)

where@! is the part of the input spectrum that is duerto
2) Open loop:
When the system is identified in open loop, the upper b¢d@yis given by

2

AsVar J(éN) < HVJTQH;U/% + ijﬁ Py /Xo

(42)

Proof: (41) follows from (40) by lettingV.J"(z) = 0 and noting that the upper left block
of &' is given by (¢, — 3+®,.P.,)"" = 1/%]. In open loop the spectrumh, = [ [ | is
diagonal, which gives (42) when used in (40). [ |

Notice that the upper bounds above are validdoy model structure, which also means that
they apply to any model order.

It is obvious that the inverse of the signal to noise ratie, ¢, ¢_!, plays an important role
for the variance. For simplicity we will here consider theiaace bound from Corollary I11.6
in the open loop case for a functioh that is independent of the noise modél Rewriting the
upper bound (42) we get

AsVar J(f) < iﬁ _;ZE:'T’; |V.J¢ ()

Thus, if the signal to noise ratio is high at frequencies wh&t/¢(e™)] is large, the model will

}Zdw

be accurate.
The next theorem describes a case when a simple bound camite: by projecting onto the
subspacé+3. This gives a lower (tighter) bound than Theorem Il1.5 wherejection on3 was

considered.

Theorem [11.7. Let the conditions for Theorem I11.4 be fulfilled for g such that|z,| > 1.
Then an upper bound of the asymptotic covariance is given by

AsCov J(0y) € —— a7 @, ()87 (2,) @ (43)

Tz -1
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Proof: An upper bound of the expression (31) is obtained by prajgctinto 12 instead
of Sy C H2, c.f. Lemma I1.6 in [12]. Since all elements of bof(z,6°) and H'(z, 6°) have
at least one time delay we will exclude constant functiortsusl following Theorem I111.4, we
can use Lemma 11.9 in [12] to express the upper bound as

a’ Rgl(zo) fj By (20)Bi(20) Rea(z0) @ (44)

k=1
where{B; }?2, is an orthonormal basis fdk2 excluding constant terms.

One such orthonormal basis is given b, (z)}2, whereBy(z) = [~*+Y/2 0] whenk is
odd, andBy(z) = [0 2~*/?] whenk is even. Forlz,| > 1 we then get
10 1
Bl (z,) Bk (z0) = |26 _—
Z ; {0 1]; [0 1] |22 — 1
which when inserted in (44) gives the upper bound in (43). [ ]

F. Comparison with an existing result

Using the orthonormality of 7, } and (25) gives that; = (7, 7;) and hence (withn being
the model order)

lim 1 E [(Tk(éN)T — ) (r(On)T - TlO)J

= tim B | [T, )~ T (o)
3 | @)~ T = o [
T Jim = B [(T(e,0n) — T,()"

(T (e, By) — To(eju))} Ti() dwd

assuming that the limit operation and the integration cotemli we now use the asymptotic

result (32) and another result from [18], namely that fregpyefunction estimates at different

frequencies become uncorrelated as the model arder oo, the expression above collapses to
1 A . -
lim — E [(m(6y)" = 7)T(m(0n)" - 77)| =0

m—oo M,

which in turn suggests that for any of the type (10) for which the chain rule (12) holds

lim - AsCov J(Oy) =0 (45)

m—oo MM,
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We have thus obtained that direct application of the moddeiolasymptotic results in [18]
gives that the asymptotic variance is of the ordém). This is a considerably weaker result
than the upper bound (39) derived in this paper. Thus we haowrs that, when the conditions
of Theorem 1II.2 hold, the upper bounds derived in this pager significantly more accurate
expressions for the asymptotic covariance than the asyiogtm/ariance expressions implied by
the results in [18]. The fact that the scaling facteris not present is especially important as it
shows that certain properties, even of highly complex systeare not subject to what is known
as the “curse of complexity”, i.e. there are system propsrthat can be accurately identified
using full order models also when the system is highly compie the next section we will see
some examples of such properties. For more details on tihpsriant topic we refer the reader
to [10, 28, 29].

G. Geometrical insights

In this section we will discuss briefly some insights that banobtained almost directly from
the asymptotic variance expressions we have derived above.

Recall the covariance expression (31)
AsCov J(Ox) = (P, { VI Rgie} s P, { VI Ric}) ' (46)
and the expression (23) for the prediction error gradient
W(z) =T'(2,0°) Rsna(2)

We will start with giving geometric interpretations to somgeite well known results. Below
Theorem III.2 it was observed that the model structure (reitat the model structure is
represented by/”(z,0°)) influences only the subspac® in (46). Furthermore, the projection
only depends on the span &f i.e. the subspac§,. From these two observations it follows that
all model structures whose predictor gradients span thes sgace will have exactly the same
asymptotic covariance. For example, ordelcaguerre models [33] with poles iwill have the
same asymptotic variance as fixed denominator models of ardéth a pole of multiplen at

¢. It also follows that scaling the model structure, i.e. agpg7'(z, 0) with T(z,6) = oT(z,6)
will not change the asymptotic variance, again since boghftimction to be projected and the

subspace does not change. On the other hand if the expeaincentditions are changed so that
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the signal to noise ratidisyr IS scaled by a factof, then sinceSy will remain the same (even
thoughv is rescaled), the asymptotic variance is scaled hy?.

Now, we turn to a less obvious insight that does not seem toeperglly known. Suppose
that the explicit expression (37) holds for somgstrictly outside the unit circle and that
contains a pole at;!. Suppose further that the orthonormal basis used in (37§ theoform
(19). If we then order the poles W such thaté; = 2!, we obtain from (19) thas3 (z,) =

1—20]72/(2o — 2;1) @and Bi(2,) = 0, k = 2,...,n, resulting in that

11— |ZO|_2

|20 = 2512

AsCov J(fy) = aTsﬁv(zo)¢;T(zO) a 47)

This expression is remarkable in that it is independent efrttodel structure and model order.
Now recall that¥(z) = T"(z,0°) Rswr(2,). Thus when the assumptions in Theorem IIl.4 apply
and when the experimental conditions can be chosen suchthatz) has a pole at; !, this
choice makes the asymptotic covariance the same for differedel structures and arbitrary
model order. This insight is important in order to come tarterwith the so called “curse of
dimensionality” discussed in Section IlI-F. We will illuaste this idea in Section IV-B where
the objective is to identify NMP-zeros. The geometric apgio has been used in [22, 14] to
generalize this result as well as to show that certain opitynproperties also hold from an

experiment design perspective.

V. ANALYSIS OF SOMELTI SYSTEM PROPERTIES

In this section we apply the results from Section Il to sorpecsfic examples of the function
J(0).

A. Frequency response

We will first look at the covariance of the frequency respoeseémate, i.eJ(6) = T'(e), 0)
for a fix frequencyw, whenT, is stable (so that the frequency response is well defineddnTh

we get

A=T'(e",0%) = W(e) Royg(e’”)
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whereV is given by (23). Theorem 111.4 can be applied to get the cavere expression
AsCov T(e™, 0y)

= R ") D By (") Bi(eh) Raya(ei+) (48)
k=1
where{B;}7_, is any orthonormal basis for the spaSe.
Itis instructive to also consider the formulation in Theurtl.2 for expressing\sCov T'(el°, O ).

We will use basis functiong;, (24) defined byG,(z) = Hi(z) = 2~ so that
T(z,0) =Y m(0)Ti(z)
k=1

is parametrized in terms of the impulse responses:0f,¢) and H(z, ). For this problem
J(7(0)) = Yoo m(0)T(e°) and hencedJ,(7)/0m, = Ti(e™) which implies thatV.J.,
defined in (30), is not anC,-function. Thus we instead look ak(0) = T'(z,,0), z, = re*°,
r > 1 and later we let- — 1. The functionV.J, is now given by

V() = [1 0] izo_kz—k _ [1 0] %

01| = 0 1 Zo %

which is a function inC, so that Assumption ii) in Theorem 111.2 holds. Furthermadkssumption
i) in the same lemma follows directly from Lemma 1l1.1 with= e*“¢ for this problem. Thus
Theorem III.2 applies under the assumptions in Sectioi\lIl-

Let {B;};_, be an orthonormal basis fd¥, and we get
(V7 (2) Rone(27), Bi(2))

1 20_12_1 —x —k * [ —k dZ
I3 Renlz B3 (=)

T2 e 1 2, 1

= R;;R(ZO>BZ(ZO) (49)

In the second equality we use that' R’ (=) B; (=) has all poles outside the unit circle (since
all B, contain at least one unit time delay which cancels the factd)y and residue calculus,

see e.g., [34], gives the result (49). The projectg{V.J. R} can now be computed as

Ps{AVJ: R

= (VR Bi)Bi = Rl20) Y Bi(20) By

k=1 k=1
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With z, = re~> andr — 1, we get the asymptotic covariance

AsCov T(e"°, Oy)

= Rou(€) > ) " By (e"°)(By,, B,) B, (e7) Reyg(e?)

k=11=1

= Raul€) D By (¢7) Bi(el) Reun(el) (50)
k=1
which, of course, is the same as (48).

The covariance expression (48) was first established in [B6employing the theory of
reproducing kernels, see also [27]. This approach is glasdhted to Theorem lIl.4. Above we
have shown that the results in [26] can be given an altermatygtem theoretic interpretation as
resulting from a projection of the weighteetransform of the sensitivity of the system frequency
function with respect to the impulse response on a subspeteendined by the model structure,
the true system and the experimental conditions. The wiaiglitinction depends on the noise
to signal ratio during the experiment (which in turn depeadghe experimental conditions and
the true system). Our paper can also be seen as an extenstbe @fork in [26] regarding

variance analysis in frequency function estimation to ganguantities/.

B. Non-minimum phase zeros

Next we consider estimation of NMP-zeros of a stable systemThe zeros of the system
are defined as the solutionsto the equation(z,0) = > 77, gx(f)z~F = 0 and we assume
that the zero of interest,,, is non-minimum phase, i.éz,| > 1. The quantity of interest is
thus J(0x) = z,(0x). Corollary 111.3 can be used sincéis independent of the noise modél
Similar to [23] we obtain

0J2(1°) R0k

— 2,

G Go(20)
whereG,(z) = Go(2)/(1 — z,271), which gives, for|z| > 1/|z,|, that

00 > —1,-1

VI(z) =~ Y e = e e T

Go<zo) k=1 ’ éo<zo> (1 N 20_12_1)
which is in £,. It is straightforward to verify that the chain rule (Assuiop ii) in Theorem

I11.2) applies: Suppose, for simplicity, that the numerapmlynomial, B(q,f), in G(q,0) =
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B(q,0)/A(q,0) is independently parametrized. Lemma II.1 gives #jdt°) = (G’(z,60°), z7%)
so that

ng 90 an )_ f:G/zeo - —k
Z0) o

Agr
B'(20(0°),0°)
“ 2 (> (05 9o\
= =" G'(2,0°) = —=— AGO0.0)
G0<ZO> Go(zo) _B(ZO(IZ;(’Z&O()@é)EgZ)(G 28%)
oz, | B(2(6°),0°)
B, (2,) 0

where B, (z) = B(z,6°)/(1 — z,2"1). But the last expression equal4(6°) [23].

We have thus verified the conditions in Theorem IIl.2 and tegngtotic variance can be
calculated in the same way as in (49)-(50), alternativelgarem 111.4 could be applied, and,
without giving all details, we get

A )\0|ZO |H ZO
AsVar z,(0y) = — E B 51
( N) |G ( |2 |R Z |2 | k ( )
where B, := [B},B;] and {B,}7_, is an orthonormal basis fof,. The expression (51) is

derived in [23] using other techniques. Also explicit exgsiens and bounds for);_, [B}(z,)|?
are derived in [23] for certain model structures. When aharormal basis of the type given
in Section II-B can be used, we see from (51) that the asyiaptatiance for a NMP-zero will
be large if there is another NMP-zero nearby. This follovesrfrthat the factotG,(z,)|? in the
denominator will be small in this case and that the basistfons are independent of the system
zeros (see Section II-B).

Bounds on the asymptotic variance can be derived using €hedit.7:
Ao | Ho(z)|?

AsVar 2,(0y) < - 52
O S PG P B RGP 2)
or using Corollary II.6:
R 1 1 2
AsVar z,(0y) < — -

(Ow) 1Go(zo)2 11 =227 1) [l g, sr

)\0 o 2
= - 53
(1 — |20]72)|Glo(20) 2 | So L2 ]y, ©9
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wherewy(w) = (1—|z,|7?)/|1—z, 'e/*|? can be seen as a weighting function witi ™ w(w)dw =
1. The weighting functionu,(w) focuses on frequencies around= arg(z,). Good accuracy
of a NMP-zero estimate is thus guaranteedHf,/(S,R)| is small in this frequency range.

The bound (53) is always larger than the bound (52) which igla bound in the sense that
equality holds (in many cases) when the model ordgoes to infinity, see [23], which provides
a quite complete asymptotic variance analysis of both zatbple estimates.

Before closing this section, we illustrate the idea outlia¢ the end of Section 1lI-G, i.e., that
the input can be used to make the asymptotic variance the &andifferent model structures
and arbitrary model orders. For simplicity we will assumattthe NMP zero is real and that

the system is operating in open loop so that the predictioor gradient (23) is given by

R(z) 0
U(z) =T'(z,60) |V BB
0 Hoy(2)

Assume first that an output error model is used and that thergphéactor of the input is chosen
as R(z) = 1/(z — z;'). From [26] it follows that (19), with¢; = 2, ! and the other poles
being the poles of the true system dynamics counted twicanisrthonormal basis when the
number of parameters in the numerator polynomial is at lesinumber of parameters in the

denominator polynomial + 1. Similar to (47), (51) then cp#as to

AsVar z,(0y)

No|2o|? |Ho(20) )2 = Mo (Jz0] = 1)
T |Go(zo)2 [R(z) 4 Z' A
|Go(20)] %o |Go(20)]

Due to the presence d?(z) in ¥ it can easily be shown that exactly the same result is olaine

for Box-Jenkins models (under the same order conditionusTan input with spectral factor
R(z) =1/(z — 2,') ensures that the asymptotic variance of an estimate of an-k#i® atz,
becomes independent both of the model and system order aadhed model structure. One
may argue that this choice of input is infeasible since itete}s on the to be estimated zero.
However, this insight is of independent value and it has tstenvn that using an estimate of the
NMP-zero inR instead may also reduce the sensitivity of the asymptoti@anee with respect

to model order and model structure, see [16].
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C. Ly-norm

Now we consider the asymptotic variance of thenorm of the estimated modél(z,0) =
Y ore 1 9k(0)Gk(2), cf. (25). TheLy-norm is given by

IG(,0)l = V(G(-6),G(0) = | > _ g7(6)

k=1
and the functiorv.J¢(z) is
Z _ Go(2)
\/Ek 1 9k 9" Gl

It is straightforward to verify the chaln rule, Assumptiopin Theorem Ill.2. Thus we can use

VJ4( € Ly

Corollary 111.3 to express the asymptotic variance as

e )]
SR

1Goll?

The projection in (54) may be cumbersome to calculate, butareuse Corollary 111.6 to get

(54)

AsVar | G(-, fx)|| = [psA

an upper bound of the asymptotic variance:
X Goll3, or
AsVar |G )| < LCehem
re
The bound can also be written in the form

AsVar ||G(-

||_27T_ dw

where we(w) = |G,(e%)[?/||G,||* is a weighting function with.m[" we(w)dw = 1. The

weighting functionwg(w) gives more weight to frequencies where the gain is large.

D. Impulse response

In this example we look at the asymptotic variance of the feonehts 7, of the estimated
modelT(z,0) = > ,-, 7(0)7x (), cf. (26), but we assume that only the first coefficients are

of interest and we let

L= =]n 5]
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Now &= = I (the identity matrix) and hence

Ti(2)
Vi (z) = :
7,.(2)
It is straightforward to verify the chain rule, Assumptionim Theorem I11.2. Thus the asymptotic

covariance can be expressed as

AsCov TT(éN) = <PS‘I,{VJTRS_I>|\]R}7 PS@{VJTRS_:JR >T (55)
< (V2,9 ',VI,)"

where the inequality comes from Theorem I11.5. If we consitthe impulse response coefficients
gr. and hy, corresponding t@,(z) = Hy(z) = 2= in (24) we get for the2 x 2 diagonal blocks
of (55) that

™

ASCov [gu(ly) hn(f)] < 5[ PP

T 2m)_
V. CONCLUSIONS

The main results in this paper are the formulae (31) and (3¥ywexpress the asymptotic
covariance as defined by (3). We have shown that these georagpressions provide insights
into how various quantities affect the asymptotic covarearn particular we demonstrated that
one can use the experimental conditions to make the asyimptotance independent of model
order and model structure in some cases.

We have also used these expressions to derive novel modeist independent upper bounds
of the asymptotic covariance, in particular for a numberahmonly estimated quantities such
as system zeros and gains and impulse response coeffidiémtisave shown that these bounds
are significantly less conservative as compared to thenaeiaxpressions that result from using
the (asymptotic in model order) variance formulae for frermey function estimation in [18].

Our work has its foundation in [26], where the significancetled subspace spanned by the
prediction error gradient was acknowledged and we have ishibat the results in [26] are

recovered from the results in this paper.
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