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Jonas Mårtensson and Håkan Hjalmarsson,Member, IEEE,

Abstract

Causal single input single output linear time invariant systems are considered. Expressions for the

asymptotic (co)variance of system properties estimated using the prediction error method are derived.

These expressions delineate the impacts of model structure, model order, true system dynamics, and

experimental conditions. A connection to recent results onfrequency function estimation is established.

Also, simple model structure independent upper bounds are established. These bounds are shown to be

significantly more accurate than what is obtained using the now classic asymptotic (in model order)

variance formulam Φv(ω)/Φu(ω) (with m being model order,Φu input spectrum andΦv noise spectrum)

for frequency function estimates. Explicit variance expressions and bounds are provided for common

system properties such as impulse response coefficients andnon-minimum phase zeros. As an illustration

of the insights the expressions provide, they are used to derive conditions on the input spectrum which

makes the asymptotic variance of non-minimum zero estimates independent of the model order and

model structure.

I. INTRODUCTION

In system identification, as in all types of modeling, it is important to be able to assess

the model error. Different assumptions on the system and thenoise lead to different ways to

quantify the model error, see [24]. Assuming the noise to be stochastic and that the system can

be described by a model within the used model set leads to error quantification using confidence

ellipsoids based on the asymptotic covariance matrix of theparameter estimates [19]. Recently
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also techniques for non-asymptotic confidence regions havebeen developed [3, 4, 2]. In this

contribution, though, we will focus on the traditional asymptotic covariance matrix which in

many cases give reliable information of the model error [6].We will consider prediction error

identification of causal single-input single-output (SISO) finite dimensional linear time invariant

(LTI) systems. The unknown system parameters will be denoted by θ = [θ1 · · · θn] ∈ R1×n

(vectors will be taken as row vectors), withθo denoting the true value (we will assume that

the true system is in the model class). We will assume that (see [19] for exact conditions) the

parameter estimatêθN ∈ R1×n has the property that the (normalized) model error
√

N(θ̂N − θo)

becomes normally distributed as the sample sizeN of the data set grows to infinity

√
N

(
θ̂N − θo

)
∈ AsN

(
0, AsCov θ̂N

)
(1)

The asymptotic covariance matrixAsCov θ̂N of the limit distribution is a measure of the model

accuracy. This is reinforced by that, under mild additionalconditions [19],

lim
N→∞

N · E

[
(θ̂N − Eθ̂N)T(θ̂N − Eθ̂N)

]
= AsCov θ̂N

Under the assumptions above

AsCov θ̂N =

[
1

2π

∫ π

−π

Ψ (ejω)Ψ ∗(ejω)dω

]−1

(2)

whereΨ : C → Cn×2 is the gradient of the one-step ahead output predictor and where superscript
∗ denotes complex conjugate transpose. We will use〈Ψ, Ψ〉 to denote the integral on the right-

hand side of (2) in the following. However, our interest willnot be the model parametersθ

themselves but some “system theoretic” quantity. We will let such a quantity be represented by

a differentiable functionJ : R1×n → C1×p for some integerp ≥ 1. Given an estimatêθN of θo,

a natural estimate ofJ(θo) is J(θ̂N). Using Gauss’ approximation formula and (2), it can be

shown [19], that the asymptotic covariance ofJ(θ̂N) is given by

AsCov J(θ̂N ) = ΛT [〈Ψ, Ψ〉]−1 Λ

whereΛ is the derivativeΛ := J ′(θo) ∈ Cn×p. We shall be slightly more general and allow

cases where〈Ψ, Ψ〉 is singular anddefine

AsCov J(θ̂N ) = ΛT [〈Ψ, Ψ〉]† Λ (3)
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The motivation for using the Moore-Penrose pseudo-inverse[〈Ψ, Ψ〉]† stems from that this gives

the correct variance for properties that are uniquely defined by the data even if the parameter

estimate is non-unique. We refer to [11, 32] for details.

When the model structure, the true system and the experimental conditions (such as whether

the system is operating in open or closed loop) are known, it is straightforward to compute (3)

numerically. However, such a procedure typically reveals little in terms of how system properties

and design variables (model order, model structure, experimental conditions etc.), influence the

asymptotic covariance. In [12] (see also [13]), a geometricapproach is used to re-express (3)

in a form more tangible for interpretation. The use of the technique is illustrated by analyzing

the impact system complexity, additional inputs and additional sensors have on the asymptotic

covariance. Our work is based on this idea and we will derive expressions for (3) for a class of

system properties including frequency responses, impulseresponse coefficients, poles and zeros,

and system norms.

A case that has attracted significant interest in the past is the variance of frequency function

estimatesG(ejω, θ̂N). For the prediction error method it was shown in [18] that1

lim
m→∞

1

m
AsVar G(ejω, θ̂N ) =

Φv(e
jω)

Φu(ejω)
(4)

wherem is the model order andΦu and Φv are the spectral densities of the input signal and

noise, respectively. This simple and elegant expression, which is valid for open loop identification,

revealed that for large model orders, the accuracy of the frequency function estimate does not

depend on the model structure or the number of the estimated parameters, but only the model

order m (which may be different from the number of estimated parameters). Furthermore, it

shows that the accuracy of the frequency function estimate at a particular frequency only depends

on the input and noise spectrum at that particular frequency. Various refinements can be found

in [35, 36, 26, 15, 9].

The frequency function result in [18] also covered closed loop identification using input and

output measurements as data, and was extended to some alternative closed loop identification

methods in [8]. Quantifications exact for finite model orderswere presented in [27]. The asymp-

totic covariance of the parameter estimates for Box-Jenkins models were studied in [5] for a range

1WhenJ is a scalar we use asymptotic variance,AsVar , as terminology for (3).
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of different closed loop identification methods and from this study it is known that knowledge of

the noise model maximizes the accuracy of the system parameters. Quantification of frequency

response errors still receives significant interest and some additional contributions are [31, 1, 3].

Parallel to the interest in the accuracy of frequency response estimates, there has been a series

of results regarding the accuracy of estimatednon-minimum phase(NMP) zeros and unstable

poles, the interest arising due to the importance of such zeros and poles in control. For poles

and zeros of magnitude larger than one, the main conclusion is that the asymptotic variance

approaches afinite limit as the model order tends to infinity [17, 23].

A related and very interesting contribution is the recent paper [7] where conditions are

established for the minimum degree of richness of the excitation required for the information

matrix 〈Ψ, Ψ〉 to be non-singular.

Contributions and outline

As pointed out in [12], the geometric approach has its originin [26], where exact expressions

for the asymptotic variance of frequency function estimates for LTI models were derived using

the theory of reproducing kernels; a theory which is based onorthogonal projections. Our

contribution to the characterization of the variance errorfor estimates of LTI systems can be

seen as an extension of the work in [26] to general system propertiesJ , using new techniques

which deepens the geometrical interpretation of (3) initiated in [26]. As a result, our contributions

provides an alternative system theoretic interpretation of the results in [26], see Section IV-A,

thus furthering the understanding of frequency function estimation.

More precisely, the contributions of this paper are:

i) Section II: Re-parametrization formulae.We provide formulae for re-expressing (3) when

the quantity of interest is parametrized in other parameters than those used in the system

identification. These expressions are useful when comparing different model parametriza-

tions in terms of the asymptotic variance they yield for the estimate of a specific system

property.

ii) Section III: A general characterization of (3) for Linear Time Invariantsystems.Here we

provide general formulas, and bounds, for (3), valid for different experimental conditions

and model parametrizations.

March 25, 2009 DRAFT



5

iii) Section IV: Expressions for the asymptotic variance for some properties of LTI systems.We

provide expressions and upper bounds for the asymptotic variance of estimated frequency

functions, NMP-zeros,L2-gains and impulse response coefficients.

iv) Model structure independent upper bounds for (3).At present there is surprisingly little

in terms of rules of thumbs available regarding model quality in system identification;

the expression (4) for the variance of the frequency function estimate and some similar

variance expressions for pole/zero estimates, being exceptions. Thus determining suitable

experiment length and excitation in order to achieve a certain accuracy of, for example, an

impulse response coefficient or an estimate of theL2 gain of the system, requires extensive

calculations based on (3). A spin-off of our new expression for (3) is that it is easy to

provide simple model structure independent upper bounds for (3). We hope this to be of

value to practitioners.

A preliminary version of this paper has appeared as [21].

NOTATION

For functionsf : C → Cn×m, f ∗(z) = (f(z))∗, the complex conjugate transpose off(z),

f ∗(z−∗) denotesf ∗(z)|z∗=z−1 and f−∗(z) and f−∗(z−∗) denote(f−1(z))∗ and (f−1(z))∗|z∗=z−1,

respectively. On the unit circlef ∗(z−∗) = f ∗(z) and when the elements off are real rational,

it holds thatf ∗(z−∗) = fT (z−1). We will consider vector valued complex functions as row

vectors and the inner product of two such functionsf, g : C → C1×m is defined as〈f, g〉 =

1
2π

∫ π

−π
f(ejω)g∗(ejω)dω. Whenf andg are matrix-valued functions, we will still use the notation

〈f, g〉 to denote 1
2π

∫ π

−π
f(ejω)g∗(ejω)dω whenever the dimensions off andg are compatible. When

W (ω) m × m is a positive definite hermitian matrix, theLW
2 -norm of f : C → Cn×m is given

by ‖f‖W =
√

Tr 〈fW, f〉 whereTr denotes the Trace operator. WhenW = I (the identity),

we write ‖f‖ and denote this theL2-norm of f . The spaceLn×m
2 consists of all functions

f : C → Cn×m such that‖f‖ < ∞ and whenn = 1, the notation is simplified toLm
2 . For

f : C → Cn×m, fi : C → C1×m denotes theith row of f . If Ψ ∈ Ln×m
2 for some positive

integersn andm, thenSΨ denotes the subspace toLm
2 generated by the span of the rows ofΨ .

Hm
2 is defined as the subspace ofLm

2 that consists of allLm
2 -functions that are analytic outside

the unit circle. Suppose thatf ∈ Lp×m
2 and thatS ⊆ Lm

2 , then the rows of̃f := PS{f} consists

of the orthogonal projection onS of the corresponding rows off .
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For a differentiable functionf : R
1×n → C

1×p, f ′(xo) is a n × p matrix with ∂fj(x)

∂xi

∣∣
x=xo

as

ijth entry, the partial derivative∂f(x̄)
∂xi

is defined analogously.

The Moore-Penrose pseudo-inverse of a matrixA is denotedA†.

II. TECHNICAL PRELIMINARIES

Often the quantityJ of interest can be expressed in terms of some generic system parameters,

such as the impulse response coefficients in case of LTI systems. In this section we will provide

a lemma which facilitates the comparison of the asymptotic variance (3) for such quantities for

different model structures.

A. Re-parametrization

Our results are based on the following theorem.

Theorem II.1 (Theorem II.5 in [12]). Suppose thatJ : R1×n → C1×p is differentiable and let

the asymptotic covariance matrixAsCov J(θ̂N ) be defined by (3) whereΨ ∈ Ln×m
2 . Suppose

that γ ∈ Lp×m
2 is such that

Λ = 〈Ψ, γ〉 (5)

then

AsCov J(θ̂N ) = 〈PSΨ
{γ},PSΨ

{γ}〉T (6)

In particular, whenJ is scalar,

AsVar J(θ̂N ) = ‖PSΨ
{γ}‖2 (7)

There is a large freedom in the choice ofγ. In Lemma II.8 in [12] it is shown that all solutions

γ ∈ Lp×m
2 to the equationΛ = 〈Ψ, γ〉 are given by

γ = Λ∗〈Ψ, Ψ〉†Ψ + s⊥, (8)

wheres⊥ is anyLp×m
2 -function orthogonal toSΨ . We will explore this degree of freedom in the

next lemma, where a reparametrization ofJ(θ) is used to find an expression for aγ that fulfills

the condition (5).
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Lemma II.2. Let Ψ ∈ Ln×m
2 and let τ : R

1×n → C
1×nτ for somenτ ∈ {1, 2, . . . ,∞}, where

the elementsτk(θ), k = 1, . . . , nτ are differentiable. Suppose that there exists some function

W : C → Cm×m such that

Ψ (z)W (z) =

nτ∑

k=1

τ ′
k(θ

o) Tk(z) ∈ Ln×m
2 (9)

for some orthonormalLm
2 -functions{Tk}nτ

k=1.

Let J : R1×n → C1×p be differentiable, withJ(θ) defined by

J(θ) = Jτ (τ(θ)) (10)

for some functionJτ for which the partial derivatives with respect toτk, k = 1, . . . , nτ exists at

θo and satisfy

∇Jτ (z) :=

nτ∑

k=1

(
∂Jτ (τ(θo))

∂τk

)∗
Tk(z) ∈ Lp×m

2 (11)

Suppose thatJτ and τ are such that the chain rule applies:

J ′(θo) =
nτ∑

k=1

τ ′
k(θ

o)
∂Jτ (τ(θo))

∂τk

(12)

and assume thatW and∇Jτ are such that

γ(z) := ∇Jτ (z)W ∗(z−∗) ∈ Lp×m
2 (13)

Then(5)–(6) hold with thisγ.

Proof: All that has to be proven is that (5) holds withγ as in (13). First notice that

〈Ψ (z), γ(z)〉 = 〈Ψ (z),∇Jτ (z)W ∗(z−∗)〉 = 〈ΨW,∇Jτ 〉

and from (9)–(11) and the orthonormality of{Tk} it follows that

〈ΨW,∇Jτ〉 =

nτ∑

k=1

τ ′
k(θ

o)
∂Jτ (τ(θo))

∂τk

which according to the assumption (12), equalsJ ′(θo) =: Λ.

We remark that (12) is satisfied ifJτ and τ both are Fréchet differentiable, see, e.g., [20].

However, it is often straightforward to verify (12) directly. We will defer further discussion of

this result to Section III-B where Lemma II.2 is used to derive an asymptotic variance expression

applicable when the underlying system is single-input single-output linear time invariant.
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The next result is Lemma II.9 in [12] adapted to the re-parametrization in Lemma II.2.

Lemma II.3. Consider the assumptions in Lemma II.2 and let{Bk}r
k=1, r ≤ n, be an orthonor-

mal basis forSΨ . Assume also that

∂Jτ (τ(θo))

∂τk
= Tk(zo)α (14)

for someα ∈ Cm×p and zo ∈ C, and letγ be defined by(13).

Then

PSΨ
{γ} = α∗W ∗(zo)

r∑

k=1

B∗
k(zo) Bk (15)

and

〈PSΨ
{γ},PSΨ

{γ}〉

= α∗W ∗(zo)
r∑

k=1

B∗
k(zo)Bk(zo)W (zo)α (16)

Furthermore

〈Ψ, γ〉 = Ψ (zo)W (zo)α (17)

Proof: We start with proving (17). SinceΨ = ΩΓ with Γ = [BT
1 , . . . ,BT

r ]T for some matrix

Ω, it is sufficient to prove that

〈Bk, γ〉 = Bk(zo)W (zo)α, k = 1, . . . , r

With γ as in (13) with (14) it holds

〈Bk, γ〉 =

nτ∑

l=1

〈Bk, TlW
∗〉 Tl(zo) α

=

nτ∑

l=1

〈BkW, Tl〉 Tl(zo) α = PY{BkW}(zo) α

whereY is the space spanned by{Tl}nτ

l=1. However, due to (9),BkW ∈ Y for k = 1, . . . , n so

the projection can be removed giving (17).

Inserting (17) (which we just proved) in

PSΨ
{γ} =

r∑

k=1

〈γ,Bk〉Bk

proves (15).
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Finally, the result (16) is immediate from (15) using the orthonormality of theBk’s.

Remark:Notice that under the conditions in Lemma II.3, the condition that∇JτW
∗(z−∗) ∈

Lp×m
2 in (13) can be written as

α∗
nτ∑

k=1

T ∗
k (zo)Tk(z) W ∗(z−∗) ∈ Lp×m

2

This may restrict the set of pointszo ∈ C for which Lemma II.3 is applicable whennτ = +∞.

In Sections IV-A and IV-B we will provide examples when (14) holds.

B. Orthonormal basis functions

Lemma II.3 shows that when an orthonormal basis forSΨ is available, it is sometimes possible

to express the asymptotic variance explicitly (without orthonormalization using, e.g., Gram-

Schmidt). A well known case [25] is when

SΨ = Span

{
z−1

Ln(z)
,

z−2

Ln(z)
, . . . ,

z−m

Ln(z)

}
(18)

whereLn(z) =
∏n

k=1(1−ξkz
−1), |ξk| < 1 for some set of specified poles{ξ1, . . . , ξn} and where

m ≥ n. Then, it holds that

SΨ = Span {B1, . . . ,Bm}

where{Bk} are the Takenaka-Malmquist functions given by

Bk(z) :=

√
1 − |ξk|2
z − ξk

· Φk−1(z), k = 1, . . . , m (19)

Φk(z) :=

k∏

l=1

1 − ξlz

z − ξl
, Φ0(z) := 1 (20)

and with ξk = 0 for k = n + 1, . . . , m. In [26] it is shown that the structure (18) holds for

common model structures such as Output-Error and Box-Jenkins provided the input spectrum

has no zeros and sufficiently many numerator coefficients areestimated. It is worth noticing that

the system zeros do not affect the basis functions above.

III. SISO LTI SYSTEMS

In this section we will apply the results in Section II to the modeling of causal finite dimen-

sional SISO linear time invariant (LTI) systems.
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Σ Σ
wt ut yt

et

vt

rtR(q)

−K(q)

Go(q)

Ho(q)

Figure 1. Block diagram of SISO LTI system with output feedback

A. System and model assumptions

Throughout the paper we will assume that the true system is given by a causal finite dimen-

sional SISO LTI systemGo(q) (q is the forward shift operator) depicted in Figure 1 whereut and

yt represent the measured input and output, respectively, where et andwt are zero mean white

noise sequences with varianceλo and1, respectively. The causal finite dimensional LTI filterR

represents a stable minimum phase spectral factor of the reference signalrt, andHo is an inversely

stable finite dimensional LTI filter that is normalized to be monic, i.e.,limz→∞ Ho(z) = 1. The

systemGo includes at least one unit time delay, so that the feedback loop is well defined, and

we also assume the entire system to be internally stabilizedby the causal finite dimensional LTI

controllerK. Furthermore, we will assume that neitherGo nor K have poles on the unit circle.

The system is said to be operated in open loop whenK = 0. Next, we introduce a quite general

family of model structures that will be covered.

The system is modeled by

yt = T (q, θ)χt, χt = [ut, et]
T (21)

where T (q, θ) = [G(q, θ), H(q, θ)] is a causal finite dimensional LTI model of the system

and the noise dynamics, parametrized by the vectorθ ∈ R1×n. The noise model may also be

independently parametrized by a separate vectorη, and then we writeH(q, η). This distinction

is only used when it has important implications and for the general treatment we can consider

the noise modelH(q, θ).
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The model parametrization is such that thetrue system is in the model set, that is, there is a,

not necessarily unique, parameterθo such that

Go(q) = G(q, θo), Ho(q) = H(q, θo)

The modelT (z, θ) is continuously differentiable with respect toθ in a neighborhood ofθo.

The type of model described above includes all standard black-box model structures such as

ARMAX, output error and Box-Jenkins.

Now, introduce the spectral factor of the signal-to-noise ratio

RSNR(z) = Rχ(z)R−1
v (z)

whereRv =
√

λoHo is a stable minimum phase spectral factor of the noise spectrum Φv and

whereRχ is a stable spectral factor of the spectrumΦχ of χ, i.e.

Rχ :=


SoR −KSoHo

0 1


[

1 0
0
√

λo

]
(22)

whereSo(q) = 1/(1 + K(q)Go(q)) is the closed loop sensitivity function. It is straightforward

to show that the predictor gradient, normalized by1/
√

λo, is given by

Ψ (z) = T ′(z, θo)RSNR(z) (23)

whereT ′(z, θ) =
[

∂G(z,θ)
∂θ

∂H(z,θ)
∂θ

]
.

We will assume that the model parametrization is such thatΨ is stable. The stability assumption

on the closed loop system and the assumptions onGo andK imply that RSNR(z) and its inverse

are real rational functions without poles on the unit circleand hence areL2×2
2 functions, as well

as bounded on the unit circle.

Our main assumption is that prediction error identificationresults in an asymptotic covariance

AsCov J(θ̂N ) of the quantity of interestJ given by (3). We refer to [19] for exact conditions

and to [11] for a discussion of the case whenθo is non-unique and〈Ψ, Ψ〉 singular.

B. Asymptotic covariance of LTI system properties

In this section we will derive an expression for the asymptotic covariance (3) of the estimate

J(θ̂N ) of an arbitrary differentiable quantityJ : R1×n → C1×p whenΨ in (3) is given by (23).

While this can be done on a case by case basis for different model structures using Theorem
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II.1, we will instead use (a generalization of) impulse response coefficients as an intermediate

parametrization in order to, through Lemma II.2, obtain an expression that is valid regardless of

the model structure.

Take{Gk(z)}∞k=1 and{Hk(z)}∞k=1 to be two sequences of orthonormalL2-functions and for

k = 1, 2, . . . define the orthonormal functions

T2k−1(z) = [Gk(z) 0], T2k(z) = [0 Hk(z)], k = 1, 2, . . . (24)

With τ = [τ1 τ2 · · · ], any transfer functionT = [G H ] satisfying the assumptions in Section

III-A can be represented by

T (z) = [G(z) H(z)] =
∞∑

k=1

τk Tk(z) (25)

on the unit circle, for suitable choices of{Gk(z)}∞k=1 and{Hk(z)}∞k=1. It is worth noticing that

also (casual) unstableG can be represented by (25) on the unit circle and that withGk(z) =

Hk(z) = z−(k−1), (25) corresponds to the usual impulse response representation.

Also the original model (21), which is parametrized by the vector θ, can be expressed through

the parametrization (25):

T (z, θ) =

∞∑

k=1

τk(θ)Tk(z) (26)

or

G(z, θ) =

∞∑

k=1

gk(θ)Gk(z), H(z, θ) =

∞∑

k=1

hk(θ)Hk(z)

wheregk = τ2k−1, hk = τ2k. We will denote byτ o the model parameters corresponding toθo,

i.e. τ o = τ(θo).

We will first establish some properties of the mapsτk : R
1×n → C, k = 1, . . ..

Lemma III.1. Under the assumptions in Section III-A,τk(θ), k = 1, . . . are differentiable atθo

and

T ′(z, θo) =

∞∑

k=1

τ ′
k(θ

o)Tk(z) ∈ Ln×2
2 (27)

Proof: By assumption, the elements ofT (z, θ) are finite dimensional real rational functions

with no poles on the unit circle, i.e. they can be written asBi(z, θ)/Ai(z, θ), i = 1, 2 for some

polynomialsBi andAi with real coefficients whereAi(z, θ
o), i = 1, 2, does not have any roots
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on the unit circle. ThusT (z, θo) belongs toL2
2 and henceτk can be expressed through the inverse

transformation

τk(θ
o) = 〈T (z, θo), Tk(z)〉 (28)

By assumptionT (z, θ) is continuously differentiable with respect toθ in a neighborhood ofθo

and hence the right hand side of (28) is differentiable atθo with derivative given by differentiation

under the integral sign [30, Theorem 9.42]. Thus

τ ′
k(θ

o) = 〈T ′(z, θo), Tk(z)〉, k = 1, . . . (29)

Now the elements ofT ′(z, θo) are given by

B′
i(z, θ

o)/Ai(z, θ
o) − Bi(z, θ

o)A′
i(z, θ

o)/A2
i (z, θ

o), i = 1, 2

and since by assumptionAi(z, θ
o), i = 1, 2 does not have any poles on the unit circle,T ′(z, θo) ∈

L2
2. But then (29) are the Fourier coefficients ofT ′(z, θo) and (27) follows. We remark that{Tk}

does not necessarily have to be an orthonormal basis forL2
2. If this is not the case we can adjoin

orthonormal functions to{Tk} so that it becomes a basis and reason as above. However since

the τk’s corresponding to the added basis functions are identically zero their derivatives will be

zero and the corresponding terms will not show up in (27).

Theorem III.2. Suppose thatJτ (τ
o) ∈ C1×p is estimated byJ(θ̂N ) = Jτ (τ(θ̂N )).

Assume that

i) The system and model assumptions in Section III-A hold.

ii) The partial derivatives ofJτ with respect toτk, k = 1, . . . , nτ exists atθo and satisfy

∇Jτ (z) :=
nτ∑

k=1

(
∂Jτ (τ

o)

∂τk

)∗
Tk(z) ∈ Lp×m

2 (30)

iii) The chain rule(12) applies.

Then

AsCov J(θ̂N )

=
〈
PSΨ

{
∇Jτ R−∗

SNR

}
,PSΨ

{
∇Jτ R−∗

SNR

}〉T
(31)

WhenJ is scalar,(31) becomes

AsVar J(θ̂N ) =
∥∥PSΨ

{
∇Jτ R−∗

SNR

}∥∥2
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Proof: The result follows from Lemma II.2 withW = R−1
SNR(z) if the conditions of this

lemma can be verified. First it follows from Lemma III.1 thatτ ′
k(θ

o) exists fork = 1, . . .. Next,

with Ψ as in (23) we get

Ψ (z) R−1
SNR(z) = T ′(z, θo)

and from Lemma III.1 we have that

T ′(z, θo) =
∞∑

k=1

τ ′
k(θ

o) Tk(z) ∈ Ln×m
2

so (9) is verified. Furthermore, (11) and (12) follows directly from Assumptions ii) and iii) in the

theorem. Finally (13) follows from Assumption ii) in the theorem and thatR−∗
SNR(z

−∗) is bounded

on the unit circle by the assumptions in Section III-A. All conditions of Lemma II.2 have now

been verified and the result follows.

The result in Theorem III.2 is basically applicable whenever the predictor gradient is given by

(23) and thus very general. Thus the expression (31) is an exact representation of the asymptotic

variance (3) which is valid for a wide range of LTI model structures, including commonly used

structures such as ARMAX, output-error and Box-Jenkins, and it can be used for both open

loop and closed loop identification. Furthermore it expresses the variance of any property of the

estimated model, (provided this property can be expressed as a differentiable function of the

(impulse response) coefficientsτk satisfying the conditions in the theorem).

Remarks:

1) The property of interest enters the expression only through the function∇Jτ which in

some sense describes the sensitivity of the propertyJ to changes in the transfer function

T . One could interpret∇Jτ as something similar to a derivative∇Jτ ∼ ∆J/∆T .

2) ∇Jτ is weighted by R−∗
SNR(z

−∗) which is a spectral factor of the ratioΦv(z)Φ−1
χ (z). This

ratio is known from the expression

lim
m→∞

1

m
AsCov T (ejω, θ̂N ) = Φv(e

jω)Φ−T
χ (ejω) (32)

derived in [18] and can be interpreted as the frequency-wisenoise to signal ratio.

3) The spaceSΨ is the span of the rows of

Ψ (z) = T ′(z, θo) R−1
SNR(z) = T ′(z, θo)Rχ(z)R−1

v (z)
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The structure of this space is thus to a large extent determined by the model structure

(throughT ′). However, the true system also determinesT ′(z, θo) (throughθo) and together

with the experimental conditions also acts as translation through the factorRχ(z)R−1
v (z).

From the observations above we see that there is a certain decoupling between different

quantities: The function of interest influences only the function that is projected and the model

structure influences only the subspace on which the functionis projected. However, the experi-

mental conditions are present both in the function to be projected and the subspace.

We also remark that Theorem III.2 illustrates the flexibility offered by (8). The function

∇Jτ (z) R−∗
SNR(z

−∗) is a function in the set (8) of functionsγ that can be used in Theorem II.1

such that〈Ψ, γ〉 is the sensitivity of the quantity of interest with respect to the model parameters

(this is the essence of Lemma II.2 and Theorem III.2). However, this function is chosen with care

so that it can be used regardless of the model structure (which determinesT ′(z, θo)). It is due

to this that the decoupling between the function of interestand the model structure, discussed

above, is obtained. As we will see in Section III-E, this alsoopens up the possibility to derive

upper bounds for the asymptotic variance that are model structure independent. This is one of

the features offered by the geometric approach employed in this paper. For further discussion

on the geometric approach we refer to the companion paper [12].

C. Some special cases whenJ is scalar

Below we will consider some special cases that lead to simplifications of (31). First we need

to separate the two columns of the matrix∇Jτ as

∇Jτ (z) =
[
∇Jg

τ (z) ∇Jh
τ (z)

]

∇Jg
τ (z) =

∞∑

k=1

(
∂Jτ (τ

o)

∂gk

)∗
Gk(z)

∇Jh
τ (z) =

∞∑

k=1

(
∂Jτ (τ

o)

∂hk

)∗
Hk(z)

and for simplicity we consider the case whenJ andJτ are scalars for which case also∇Jg
τ and

∇Jh
τ are scalars.

Corollary III.3 (Simplifications of Theorem III.2). Under the assumptions in Theorem III.2 we

have the following special cases for scalar functionsJ :

March 25, 2009 DRAFT



16

1) J independent of noise model H:

WhenJ does not depend on the noise modelH, the asymptotic variance ofJ(θ̂N) is given

by

AsVar J(θ̂N ) =
∥∥∥PSΨ

{
∇Jg

τ

[√
λ0H∗

o

S∗

oR∗
0
]}∥∥∥

2

(33)

2) Open loop operation:

WhenK = 0 the asymptotic variance ofJ(θ̂N ) is given by

AsVar J(θ̂N) =
∥∥∥PSΨ

{[
∇Jg

τ

√
λ0H∗

o

R∗
∇Jh

τ H∗
o

]}∥∥∥
2

(34)

FurthermoreSΨ is the span of the rows of
[
G′(z, θo)R(z)√

λoHo(z)
,

H ′(z, θo)

Ho(z)

]

3) Open loop and independent parametrization:

WhenK = 0 and the modelG(z, θ) and the noise modelH(z, η) are independently parametrized,

the asymptotic variance ofJ(θ̂N , η̂N) is given by

AsVar J(θ̂N , η̂N) =

=
∥∥∥PSΨG

{
∇Jg

τ

√
λ0H∗

o

R∗

}∥∥∥
2

+
∥∥∥PSΨH

{
∇Jh

τ H∗
o

}∥∥∥
2

(35)

whereΨG = R(z)G′(z, θo)/Ho(z) and ΨH = H ′(z, ηo)/Ho(z), respectively.

Proof: The proofs are straightforward and therefore omitted.

Remarks:

1) We noted earlier that the weightingR−1
SNR(z) appearing in (31) is a spectral factor of

Φv(z)Φ−1
χ (z). The upper left corner of this ratio is given byΦv/Φ

r
u whereΦr

u denotes the

spectrum of the contribution ofr to u. When we only consider properties of the model

G (and notH) only this ratio matters andH∗
o/(S∗

oR
∗) in (33) is a spectral factor of this

ratio.

2) Notice that scalings in the input amplitude only affects the weighting
√

λoHo/R in (35)

and not the spaceSΨ since the span ofΨ is unaffected by frequency independent scalings

factors.
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D. An explicit expression of the asymptotic variance

The most complicated step of evaluating the variance expression (31) is the projection onto

the spaceSΨ . If an orthonormal basis{Bk(z)}n
k=1 of SΨ is known, then as shown in [12] the

projection can be computed from

PSΨ
{f} :=

n∑

k=1

〈f,Bk〉Bk

For some propertiesJ , the asymptotic variance (31) can be expressed directly as afunction of

an orthonormal basis for the spaceSΨ .

Theorem III.4. Let the assumptions in Section III-A be in force. Suppose that

Λ = T ′(zo, θ
o)α (36)

holds for somezo ∈ C and someα ∈ C2×p, then the asymptotic covariance can be expressed as

AsCov J(θ̂N ) =

αTR−T
SNR(zo)

n∑

k=1

BT
k (zo)Bk(zo) R−1

SNR(zo) α (37)

where{Bk}n
k=1 is any orthonormal basis for the spaceSΨ .

The result(37) also holds under the conditions of Theorem III.2 if, in addition, the condition

∂Jτ (τ)

∂τk

∣∣∣∣
τ=τ(θo)

= Tk(zo)α (38)

holds for someα ∈ C2×p and zo ∈ C.

Proof: The relation (36) implies thatΛ = Ψ (zo)R
−1
SNR(zo)α and then Lemma II.9 in [12]

gives (37).

Next, from (38) follows that

∇Jτ R−∗
SNR(zo) = α∗

∞∑

k=1

T ∗
k (zo) Tk R−∗

SNR(zo)

and now Lemma II.3 gives (37).

Conditions (38) and (36) for Theorem III.4 are closely related. Condition (38) can be formu-

lated as

∂Jτ (τ)

∂τk
=

∂T (zo, τ)

∂τk
α
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while condition (36) can be formulated as

∂J(θ)

∂θk

=
∂T (zo, θ)

∂θk

α

and we see that the only difference lies in the parametrization and that it does not matter if the

system and the propertyJ are described by the model parametersθ or the by the coefficientsτ

of the rational orthonormal basis representation.

E. Upper bounds

One advantage with the new expression (31) for the asymptotic covariance (3) is that it is easy

to provide simple, model structure independent, bounds for(3). These bounds are obtained by

replacing the projection ontoSΨ with projections onto the spacesH2
2 or L2

2, giving upper bounds

for (3). When we are projecting onL2
2, i.e. when the projection is removed, the bounds derived

below are typically conservative even as the model order increases sinceSΨ ⊆ Hm
2 regardless

of the model order and model structure, while the function that is projected,∇Jτ R−∗
SNR, typically

has a term that belongs to the complement ofHm
2 .

Theorem III.5. Let the conditions of Theorem III.2 be fulfilled. An upper bound of the asymptotic

covariance ofJ(θ̂N ) is then given by

AsCov J(θ̂N ) ≤ 〈∇JτΦvΦ
−1
χ ,∇Jτ 〉T (39)

WhenJ is scalar we get

AsVar J(θ̂N ) ≤ ‖∇Jτ‖2
ΦvΦ−1

χ
(40)

Proof: By removing the projection in (31) of Theorem III.2 we get an upper bound, c.f.

Lemma II.6 in [12].

We remark that the bounds in Theorem III.5 typically (but notalways) through∇Jτ and

R−1
SNR(z) depend on the true underlying system.

Before discussing the expression (40) we also present two special cases that simplify the

expression further.

Corollary III.6 (Simplifications of Theorem III.5). Under the assumptions in Theorem III.5 we

have the following simplifying special cases:
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1) Independent of noise model H:

When the propertyJ does not depend on the noise modelH, the upper bound(40) is given

by

AsVar J(θ̂N ) ≤ ‖∇Jg
τ ‖2

Φv/Φr
u

(41)

whereΦr
u is the part of the input spectrum that is due tort.

2) Open loop:

When the system is identified in open loop, the upper bound(40) is given by

AsVar J(θ̂N ) ≤ ‖∇Jg
τ ‖2

Φv/Φu
+

∥∥∇Jh
τ

∥∥2

Φv/λ0

(42)

Proof: (41) follows from (40) by letting∇Jh
τ (z) ≡ 0 and noting that the upper left block

of Φ−1
χ is given by (Φu − 1

λ0

ΦueΦeu)
−1 = 1/Φr

u. In open loop the spectrumΦχ =
[

Φu 0
0 λo

]
is

diagonal, which gives (42) when used in (40).

Notice that the upper bounds above are valid forany model structure, which also means that

they apply to any model order.

It is obvious that the inverse of the signal to noise ratio, i.e. ΦvΦ
−1
χ , plays an important role

for the variance. For simplicity we will here consider the variance bound from Corollary III.6

in the open loop case for a functionJτ that is independent of the noise modelH. Rewriting the

upper bound (42) we get

AsVar J(θ̂) ≤ 1

2π

∫ π

−π

Φv(e
jω)

Φu(ejω)

∣∣∇Jg
τ (ejω)

∣∣2 dω

Thus, if the signal to noise ratio is high at frequencies where |∇Jg
τ (ejω)| is large, the model will

be accurate.

The next theorem describes a case when a simple bound can be found by projecting onto the

subspaceH2
2. This gives a lower (tighter) bound than Theorem III.5 whereprojection onL2

2 was

considered.

Theorem III.7. Let the conditions for Theorem III.4 be fulfilled for azo such that|zo| > 1.

Then an upper bound of the asymptotic covariance is given by

AsCov J(θ̂N ) ≤ 1

|zo|2 − 1
αT Φv(zo)Φ

−T
χ (zo) α (43)
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Proof: An upper bound of the expression (31) is obtained by projecting ontoH2
2 instead

of SΨ ⊆ H2
2, c.f. Lemma II.6 in [12]. Since all elements of bothG′(z, θo) and H ′(z, θo) have

at least one time delay we will exclude constant functions. Thus, following Theorem III.4, we

can use Lemma II.9 in [12] to express the upper bound as

αT R−T
SNR(zo)

∞∑

k=1

BT
k (zo)Bk(zo) R−1

SNR(zo) α (44)

where{Bk}∞k=1 is an orthonormal basis forH2
2 excluding constant terms.

One such orthonormal basis is given by{Bk(z)}∞k=1 whereBk(z) = [z−(k+1)/2 0] when k is

odd, andBk(z) = [0 z−k/2] whenk is even. For|zo| > 1 we then get

∞∑

k=1

BT
k (zo)Bk(zo) =


1 0

0 1




∞∑

k=1

|zo|−2k =


1 0

0 1


 1

|zo|2 − 1

which when inserted in (44) gives the upper bound in (43).

F. Comparison with an existing result

Using the orthonormality of{Tk} and (25) gives thatτl = 〈T, Tl〉 and hence (withm being

the model order)

lim
m→∞

1

m
E

[
(τk(θ̂N )T − τ o

k )T(τl(θ̂N )T − τ o
l )

]

= lim
m→∞

1

m
E

[
1

2π

∫ π

−π

T ∗
k (ejω)(T (ejω, θ̂N) − To(e

jω))T dω

1

2π

∫ π

−π

(T (ejµ, θ̂N ) − To(ejµ))Tl(e
jµ)dµ

]
=

1

(2π)2

∫ π

−π

∫ π

−π

T ∗
k (ejω) lim

m→∞

1

m
E

[
(T (ejω, θ̂N) − To(e

jω))T

(T (ejµ, θ̂N) − To(ejµ))
]
Tl(e

jµ)dωdµ

assuming that the limit operation and the integration commute. If we now use the asymptotic

result (32) and another result from [18], namely that frequency function estimates at different

frequencies become uncorrelated as the model orderm → ∞, the expression above collapses to

lim
m→∞

1

m
E

[
(τk(θ̂N )T − τ o

k )T(τl(θ̂N)T − τ o
l )

]
= 0

which in turn suggests that for anyJ of the type (10) for which the chain rule (12) holds

lim
m→∞

1

m
AsCov J(θ̂N ) = 0 (45)
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We have thus obtained that direct application of the model order asymptotic results in [18]

gives that the asymptotic variance is of the ordero(m). This is a considerably weaker result

than the upper bound (39) derived in this paper. Thus we have shown that, when the conditions

of Theorem III.2 hold, the upper bounds derived in this paperare significantly more accurate

expressions for the asymptotic covariance than the asymptotic covariance expressions implied by

the results in [18]. The fact that the scaling factorm is not present is especially important as it

shows that certain properties, even of highly complex systems, are not subject to what is known

as the “curse of complexity”, i.e. there are system properties that can be accurately identified

using full order models also when the system is highly complex. In the next section we will see

some examples of such properties. For more details on this important topic we refer the reader

to [10, 28, 29].

G. Geometrical insights

In this section we will discuss briefly some insights that canbe obtained almost directly from

the asymptotic variance expressions we have derived above.

Recall the covariance expression (31)

AsCov J(θ̂N ) =
〈
PSΨ

{
∇JτR

−∗
SNR

}
,PSΨ

{
∇JτR

−∗
SNR

}〉T
(46)

and the expression (23) for the prediction error gradient

Ψ (z) = T ′(z, θo)RSNR(z)

We will start with giving geometric interpretations to somequite well known results. Below

Theorem III.2 it was observed that the model structure (recall that the model structure is

represented byT ′(z, θo)) influences only the subspaceSΨ in (46). Furthermore, the projection

only depends on the span ofΨ , i.e. the subspaceSΨ . From these two observations it follows that

all model structures whose predictor gradients span the same space will have exactly the same

asymptotic covariance. For example, ordern Laguerre models [33] with poles inξ will have the

same asymptotic variance as fixed denominator models of order n with a pole of multiplen at

ξ. It also follows that scaling the model structure, i.e. replacingT (z, θ) with T̃ (z, θ) = αT (z, θ)

will not change the asymptotic variance, again since both the function to be projected and the

subspace does not change. On the other hand if the experimental conditions are changed so that
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the signal to noise ratioRSNR is scaled by a factorβ, then sinceSΨ will remain the same (even

thoughΨ is rescaled), the asymptotic variance is scaled by1/β2.

Now, we turn to a less obvious insight that does not seem to be generally known. Suppose

that the explicit expression (37) holds for somezo strictly outside the unit circle and thatΨ

contains a pole atz−1
o . Suppose further that the orthonormal basis used in (37) is of the form

(19). If we then order the poles inΨ such thatξ1 = z−1
o , we obtain from (19) thatB1(zo) =

√
1 − |zo|−2/(zo − z−1

o ) andBk(zo) = 0, k = 2, . . . , n, resulting in that

AsCov J(θ̂N ) =
1 − |zo|−2

|zo − z−1
o |2 αTΦv(zo)Φ

−T
χ (zo) α (47)

This expression is remarkable in that it is independent of the model structure and model order.

Now recall thatΨ (z) = T ′(z, θo)RSNR(zo). Thus when the assumptions in Theorem III.4 apply

and when the experimental conditions can be chosen such thatRSNR(z) has a pole atz−1
o , this

choice makes the asymptotic covariance the same for different model structures and arbitrary

model order. This insight is important in order to come to terms with the so called “curse of

dimensionality” discussed in Section III-F. We will illustrate this idea in Section IV-B where

the objective is to identify NMP-zeros. The geometric approach has been used in [22, 14] to

generalize this result as well as to show that certain optimality properties also hold from an

experiment design perspective.

IV. A NALYSIS OF SOMELTI SYSTEM PROPERTIES

In this section we apply the results from Section III to some specific examples of the function

J(θ).

A. Frequency response

We will first look at the covariance of the frequency responseestimate, i.e.J(θ) = T (ejωo, θ)

for a fix frequencyωo whenTo is stable (so that the frequency response is well defined). Then

we get

Λ = T ′(ejωo, θo) = Ψ (ejωo)R−1
SNR(e

jωo)

March 25, 2009 DRAFT



23

whereΨ is given by (23). Theorem III.4 can be applied to get the covariance expression

AsCov T (ejωo, θ̂N )

= R−T
SNR(e

jωo)
n∑

k=1

BT
k (ejωo)Bk(ejωo) R−1

SNR(ejωo) (48)

where{Bk}n
k=1 is any orthonormal basis for the spaceSΨ .

It is instructive to also consider the formulation in Theorem III.2 for expressingAsCov T (ejωo, θ̂N ).

We will use basis functionsTk (24) defined byGk(z) = Hk(z) = z−(k−1) so that

T (z, θ) =

∞∑

k=1

τk(θ)Tk(z)

is parametrized in terms of the impulse responses ofG(z, θ) and H(z, θ). For this problem

Jτ (τ(θ)) =
∑∞

k=1 τk(θ)Tk(e
jωo) and hence∂Jτ (τ)/∂τk = Tk(e

jωo) which implies that∇Jτ ,

defined in (30), is not anL2-function. Thus we instead look atJ(θ) = T (zo, θ), zo = rejωo,

r > 1 and later we letr → 1. The function∇Jτ is now given by

∇Jτ (z) =


1 0

0 1




∞∑

k=1

z̄−k
o z−k =


1 0

0 1


 z̄−1

o z−1

1 − z̄−1
o z−1

which is a function inL2 so that Assumption ii) in Theorem III.2 holds. Furthermore,Assumption

iii) in the same lemma follows directly from Lemma III.1 withz = ejωo for this problem. Thus

Theorem III.2 applies under the assumptions in Section III-A.

Let {Bk}n
k=1 be an orthonormal basis forSΨ and we get

〈∇Jτ (z)R−∗
SNR(z

−∗),Bk(z)〉

=
1

2πj

∮

|z|=1

z̄−1
o z−1

1 − z̄−1
o z−1

R−∗
SNR(z

−∗)B∗
k(z

−∗)
dz

z

= R−∗
SNR(zo)B∗

k(zo) (49)

In the second equality we use thatz−1R−∗
SNR(z

−∗)B∗
k(z

−∗) has all poles outside the unit circle (since

all Bk contain at least one unit time delay which cancels the factorz−1) and residue calculus,

see e.g., [34], gives the result (49). The projectionPSΨ
{∇JτR

−∗
SNR} can now be computed as

PSΨ
{∇JτR

−∗
SNR}

=

n∑

k=1

〈∇JτR
−∗
SNR,Bk〉Bk = R−∗

SNR(zo)

n∑

k=1

B∗
k(zo)Bk
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With zo = rejωo andr → 1, we get the asymptotic covariance

AsCov T (ejωo, θ̂N)

= R−T
SNR(e

jωo)

n∑

k=1

n∑

l=1

BT
k (ejωo)〈Bk,Bp〉Bp(ejωo) R−1

SNR(ejωo)

= R−T
SNR(e

jωo)

n∑

k=1

BT
k (ejωo)Bk(ejωo) R−1

SNR(ejωo) (50)

which, of course, is the same as (48).

The covariance expression (48) was first established in [26]by employing the theory of

reproducing kernels, see also [27]. This approach is closely related to Theorem III.4. Above we

have shown that the results in [26] can be given an alternative system theoretic interpretation as

resulting from a projection of the weightedz-transform of the sensitivity of the system frequency

function with respect to the impulse response on a subspace determined by the model structure,

the true system and the experimental conditions. The weighting function depends on the noise

to signal ratio during the experiment (which in turn dependson the experimental conditions and

the true system). Our paper can also be seen as an extension ofthe work in [26] regarding

variance analysis in frequency function estimation to general quantitiesJ .

B. Non-minimum phase zeros

Next we consider estimation of NMP-zeros of a stable systemGo. The zeros of the system

are defined as the solutionsz to the equationG(z, θ) =
∑∞

k=1 gk(θ)z
−k = 0 and we assume

that the zero of interest,zo, is non-minimum phase, i.e.|zo| > 1. The quantity of interest is

thusJ(θ̂N ) = zo(θ̂N). Corollary III.3 can be used sinceJ is independent of the noise modelH.

Similar to [23] we obtain

∂Jg
τ (τ o)

∂gk
= − zo

G̃o(zo)
z−k

o

whereG̃o(z) = Go(z)/(1 − zoz
−1), which gives, for|z| > 1/|zo|, that

∇Jg
τ (z) = − z̄o

G̃o(zo)

∞∑

k=1

z̄−k
o z−k = − z̄o

G̃o(zo)

z̄−1
o z−1

(1 − z̄−1
o z−1)

which is in L2. It is straightforward to verify that the chain rule (Assumption ii) in Theorem

III.2) applies: Suppose, for simplicity, that the numerator polynomial, B(q, θ), in G(q, θ) =
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B(q, θ)/A(q, θ) is independently parametrized. Lemma III.1 gives thatg′
k(θ

o) = 〈G′(z, θo), z−k〉
so that

∞∑

k=1

g′
k(θ

o)
∂Jg

τ (τ o)

∂gk
= − zo

G̃o(zo)

∞∑

k=1

〈G′(z, θo), z−k〉 z−k
o

= − zo

G̃o(zo)
G′(zo, θ

o) = − zo

G̃o(zo)




B′(zo(θo),θo)
A(zo(θo),θo)

−B(zo(θo),θo)A′(zo(θo),θo)
A2(zo(θo),θo)





= − zo

B̃o(zo)



B′(zo(θ
o), θo)

0





whereB̃o(z) = B(z, θo)/(1 − zoz
−1). But the last expression equalsJ ′(θo) [23].

We have thus verified the conditions in Theorem III.2 and the asymptotic variance can be

calculated in the same way as in (49)-(50), alternatively Theorem III.4 could be applied, and,

without giving all details, we get

AsVar zo(θ̂N) =
λ0|zo|2
|G̃o(zo)|2

|Ho(zo)|2
|R(zo)|2

n∑

k=1

|B1
k(zo)|2 (51)

where Bk := [B1
k,B2

k] and {Bk}n
k=1 is an orthonormal basis forSΨ . The expression (51) is

derived in [23] using other techniques. Also explicit expressions and bounds for
∑n

k=1 |B1
k(zo)|2

are derived in [23] for certain model structures. When an orthonormal basis of the type given

in Section II-B can be used, we see from (51) that the asymptotic variance for a NMP-zero will

be large if there is another NMP-zero nearby. This follows from that the factor|G̃o(zo)|2 in the

denominator will be small in this case and that the basis functions are independent of the system

zeros (see Section II-B).

Bounds on the asymptotic variance can be derived using Theorem III.7:

AsVar zo(θ̂N ) ≤ λ0

(1 − |zo|−2)|G̃o(zo)|2
|Ho(zo)|2

|So(zo)R(zo)|2
(52)

or using Corollary III.6:

AsVar zo(θ̂N ) ≤ 1

|G̃o(zo)|2

∥∥∥∥
1

(1 − z̄−1
o z−1)

∥∥∥∥
2

Φv/Φr
u

=
λ0

(1 − |zo|−2)|G̃o(zo)|2

∥∥∥∥
Ho

SoR

∥∥∥∥
2

wZ

(53)
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wherewZ(ω) = (1−|zo|−2)/|1−z−1
o ejω|2 can be seen as a weighting function with1

2π

∫ π

−π
wZ(ω)dω =

1. The weighting functionwZ(ω) focuses on frequencies aroundω = arg(zo). Good accuracy

of a NMP-zero estimate is thus guaranteed if|Ho/(SoR)| is small in this frequency range.

The bound (53) is always larger than the bound (52) which is a tight bound in the sense that

equality holds (in many cases) when the model ordern goes to infinity, see [23], which provides

a quite complete asymptotic variance analysis of both zero and pole estimates.

Before closing this section, we illustrate the idea outlined at the end of Section III-G, i.e., that

the input can be used to make the asymptotic variance the samefor different model structures

and arbitrary model orders. For simplicity we will assume that the NMP zero is real and that

the system is operating in open loop so that the prediction error gradient (23) is given by

Ψ (z) = T ′(z, θo)




R(z)√
λo Ho(z)

0

0 1
Ho(z)




Assume first that an output error model is used and that the spectral factor of the input is chosen

as R(z) = 1/(z − z−1
o ). From [26] it follows that (19), withξ1 = z−1

o and the other poles

being the poles of the true system dynamics counted twice, isan orthonormal basis when the

number of parameters in the numerator polynomial is at leastthe number of parameters in the

denominator polynomial + 1. Similar to (47), (51) then collapses to

AsVar zo(θ̂N )

=
λ0|zo|2
|G̃o(zo)|2

|Ho(zo)|2
|R(zo)|2

n∑

k=1

|B1
k(zo)|2 =

λ0 (|zo|2 − 1)

|G̃o(zo)|2

Due to the presence ofR(z) in Ψ it can easily be shown that exactly the same result is obtained

for Box-Jenkins models (under the same order condition). Thus an input with spectral factor

R(z) = 1/(z − z−1
o ) ensures that the asymptotic variance of an estimate of an NMP-zero atzo

becomes independent both of the model and system order and also the model structure. One

may argue that this choice of input is infeasible since it depends on the to be estimated zero.

However, this insight is of independent value and it has beenshown that using an estimate of the

NMP-zero inR instead may also reduce the sensitivity of the asymptotic variance with respect

to model order and model structure, see [16].
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C. L2-norm

Now we consider the asymptotic variance of theL2-norm of the estimated modelG(z, θ) =
∑∞

k=1 gk(θ)Gk(z), cf. (25). TheL2-norm is given by

‖G(·, θ)‖ =
√
〈G(·, θ), G(·, θ)〉 =

√√√√
∞∑

k=1

g2
k(θ)

and the function∇Jg
τ (z) is

∇Jg
τ (z) =

∞∑

k=1

gk(θ
o)Gk(z)√∑∞

k=1 g2
k(θ

o)
=

Go(z)

‖Go‖
∈ L2

It is straightforward to verify the chain rule, Assumption ii) in Theorem III.2. Thus we can use

Corollary III.3 to express the asymptotic variance as

AsVar ‖G(·, θ̂N)‖ =

∥∥∥PSΨ

{[√
λoGoH∗

o

S∗

oR∗
0
]}∥∥∥

2

‖Go‖2
(54)

The projection in (54) may be cumbersome to calculate, but wecan use Corollary III.6 to get

an upper bound of the asymptotic variance:

AsVar ‖G(·, θ̂N)‖ ≤
‖Go‖2

Φv/Φr
u

‖Go‖2

The bound can also be written in the form

AsVar ‖G(·, θ̂N)‖ ≤ 1

2π

∫ π

−π

Φv(ω)

Φr
u(ω)

wG(ω)dω

where wG(ω) = |Go(e
jω)|2/‖Go‖2 is a weighting function with 1

2π

∫ π

−π
wG(ω)dω = 1. The

weighting functionwG(ω) gives more weight to frequencies where the gain is large.

D. Impulse response

In this example we look at the asymptotic variance of the coefficients τk of the estimated

modelT (z, θ) =
∑∞

k=1 τk(θ)Tk(z), cf. (26), but we assume that only the firstnτ coefficients are

of interest and we let

Jτ (τ) = τT =
[
τ1 · · · τnτ

]
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Now dJτ

dτ
= I (the identity matrix) and hence

∇Jτ (z) =




T1(z)
...

Tnτ
(z)




It is straightforward to verify the chain rule, Assumption ii) in Theorem III.2. Thus the asymptotic

covariance can be expressed as

AsCov τT(θ̂N) = 〈PSΨ
{∇JτR

−∗
SNR},PSΨ

{∇JτR
−∗
SNR}〉T

≤ 〈∇JτΦvΦ
−1
χ ,∇Jτ 〉T

(55)

where the inequality comes from Theorem III.5. If we consider the impulse response coefficients

gk andhk corresponding toGk(z) = Hk(z) = z−k in (24) we get for the2 × 2 diagonal blocks

of (55) that

AsCov
[
gk(θ̂N ) hk(θ̂N )

]
≤ 1

2π

∫ π

−π

Φv(e
jω)Φ−T

χ (ejω)dω

V. CONCLUSIONS

The main results in this paper are the formulae (31) and (37) which express the asymptotic

covariance as defined by (3). We have shown that these geometric expressions provide insights

into how various quantities affect the asymptotic covariance. In particular we demonstrated that

one can use the experimental conditions to make the asymptotic variance independent of model

order and model structure in some cases.

We have also used these expressions to derive novel model structure independent upper bounds

of the asymptotic covariance, in particular for a number of commonly estimated quantities such

as system zeros and gains and impulse response coefficients.We have shown that these bounds

are significantly less conservative as compared to the variance expressions that result from using

the (asymptotic in model order) variance formulae for frequency function estimation in [18].

Our work has its foundation in [26], where the significance ofthe subspace spanned by the

prediction error gradient was acknowledged and we have shown that the results in [26] are

recovered from the results in this paper.
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