
Groupy: a group membership service

Johan Montelius

October 1, 2013

Introduction

This is an assignment were you will implement a group membership service
that provides atomic multicast. The aim is to have several application layer
processes with a coordinated state i.e. they should all perform the same
sequence of state changes. A node that wishes to perform a state change
must first multicast the change to the group so that all nodes can execute it.
Since the multicast layer provides total order, all nodes will be synchronized.

The problem in this assignment is that all nodes need to be synchronized
even though nodes may come and go (crash). As you will see it is not as
trivial as one might first think.

1 The architecture

We will implement a group membership service that provides atomic mul-
ticast in view synchrony. The architecture consists of a set of nodes where
one is the elected leader. All nodes that wish to multicast a message will
send the message to the leader and the leader will do a basic multicast to
all members of the group. If the leader dies a new leader is elected.

A new node that wishes to enter the group will contact any node in the
group and request to be join the group. The leader will determine when the
node is to be included and deliver a new view to the group.

Each application layer process will have its own group process that it
communicates with. The application layer will send multicast messages
to the group process and receive all multicasted messages from it. The
application layer must also be prepared to decide if a new node should be
allowed to enter the group and also decide the initial state of this node.

Note that we will not deliver any views to the application layer. We could
adapt the system so that it reports any view changes but for the application
that we are targeting this is not needed. We will keep it as simple as possible
and then discuss extensions and how much they would cost.

1.1 view synchrony

Each node in the group should be able to multicast messages to the members
of the group. The communication is divided into views and messages will be
said to be delivered in a view. For all messages in a view we will guarantee
the following:

1



• in FIFO order: in the order that they were sent by a node

• in total order: all nodes see the same sequence

• reliably: if a correct node delivers a message, all correct nodes deliver
the message

The last statement seems to be a bit weak, what do we mean by a correct
node? A node will fail only by crashing and will then never be heard from
again. A correct node is a node that does not fail during a view i.e. it
survives to install the next view.

It will not be guaranteed that sent messages are delivered, we will use
asynchronous sending without acknowledgement and if we have a failing
leader a sent message might disappear.

1.2 the leader

A node will either play the role of a leader (let’s hope there is only one)
or a slave. All slaves will forward messages to the leader and the leader
will tag each message with a sequence number and multicast it to all nodes.
The leader can also accept a message directly from its own master i.e. the
application layer. The application layer is unaware of whether its group
process is acting as a leader or a slave.

1.3 a slave

A slave will receive messages from its application layer process and forward
them to the leader. It will also receive messages from the leader and forward
them to the application layer. If nodes would not fail this would be the
easiest job in the world but since we must be able to act if the leader dies
we need to do some bookkeeping.

In our first version of the implementation, we will not deal with failures
but only with adding new nodes to the system. This is complicated enough
to start with.

1.4 the election

The election procedure is very simple. All slaves have the same list of peers
and they all elect the first node in the list as the leader. A slave that detects
that it is the first node will of course adopt the role as leader. The leader
will have to resend the last message that it received and the slaves will have
to monitor the new leader.

2



1.5 the application layer

An application process will create a group process and contact any other
application process it knows of. It will request to join the group providing
the process identifier of its group process. It will then wait for a view
delivery, containing the peer processes in the group.

There is no guarantee that the request is delivered to the leader or the
leader could be dead and we have not detected this yet. The requesting
application process is however not told about this so we can not do anything
but wait and hope for the best. We will use a timeout and if we have not
been invited we just abort the attempt.

Once added to the group the application process has the problem of
obtainning the correct state (the color). It does this by using the atomic
multicast layer in a clever way. It sends a request to obtain the state and
waits for this message to be delivered to itself. It now knows that the other
processes sees this message and respond by sending the state, also using the
multicast layer.

The state message might however not be the first message that is deliv-
ered. We might have other state changes in the pipeline. Once the state
is received these state chanes msut of course be applied to the state before
the process is up and running. The implementation uses the implicit deferal
of Erlang and simply let any state change messages remain in the message
queue and chooses to handle the state message first before the state change
messages.

2 the first implementation

Our first version, called gms1, will only handle starting of a single node and
the adding of more nodes. Failures will not be handled so some of the states
that we need to keep track of is not described. We will then extend this
implementation to handle failures.

The group process will when started be a slave but might in the future
become a leader. The first process that is started will however become a
leader directly.

2.1 the leader process

The leader keeps the following state:

• Id: a unique name, of the node, only used for debugging

• Master: the process identifier of the application layer

• Slaves: an ordered list of the process identifiers of all slaves in the
group

3



• Group: a list of all application layer processes in the group

The list of slaves is ordered based on when they were admitted to the
group. We will use this order in the election procedure.

The leader should be able to handle the following messages:

• {mcast, Msg}: a message either from its own master or from a peer
node. A message {msg, Msg} is multicasted to all peers and a message
Msg is sent to the application layer.

• {join, Wrk, Peer}: a message, from a peer or the master, that is
a request from a node to join the group. The message contains both
the process identifier of the application layer, Wrk, and the proces
sidentifier of its group process.

The state of a leader is implemented by the following procedure. We use
a function bcast/3 that will send a message to each of the processes in a
list.

leader(Id, Master, Slaves, Group) ->

receive

{mcast, Msg} ->

bcast(Id, {msg, Msg}, Slaves),

Master ! Msg,

leader(Id, Master, Slaves, Group);

{join, Wrk, Peer} ->

Slaves2 = lists:append(Slaves, [Peer]),

Group2 = lists:append(Group, [Wrk]),

bcast(Id, {view, [self()|Slaves2], Group2}, Slaves2),

Master ! {view, Group2},

leader(Id, Master, Slaves2, Group2);

stop ->

ok

end.

Notice that we add the new node at the end of the list of peers. This is
important, we want the new node to be the last one to see the view message
that we send out. More on this later when we look at failing nodes.

2.2 a slave

A slave has an even simpler job, it will not make any complicated decisions.
It is simply forwarding messages from its master to the leader and vice
versa. The state of a slave is exactly the same as for the leader with the
only exception that the slaves keep explict track of the leader.

The messages from the master are the following:

4



• {mcast, Msg}: a request from its master to multicast a message, the
message is forwarded to the leader.

• {join, Wrk, Peer}: a request from the master to allow a new node
to join the group, the message is forwarded to the leader.

• {msg, Msg}: a multicasted message from the leader. A message Msg

is sent to the master.

• {view, Peers, Group}: a multicasted view from the leader. A view
is delivered to the master process.

This is the implementation of the slave:

slave(Id, Master, Leader, Slaves, Group) ->

receive

{mcast, Msg} ->

Leader ! {mcast, Msg},

slave(Id, Master, Leader, Slaves, Group);

{join, Wrk, Peer} ->

Leader ! {join, Wrk, Peer},

slave(Id, Master, Leader, Slaves, Group);

{msg, Msg} ->

Master ! Msg,

slave(Id, Master, Leader, Slaves, Group);

{view, [Leader|Slaves2], Group2} ->

Master ! {view, Group2}

slave(Id, Master, Leader, Slaves2, Group2);

stop ->

ok

end.

Since we will not yet deal with failure there is no transition between
being a slave and becoming a leader. We will add this later but first let us
have this thing up and running.

2.3 initialization

Initializing a process that is the first node in a group is simple. The only
thing we need to do is to give it an empty list of peers and let it know that
its master is the only node in the group. Since it is the only node in the
group it will of course be the leader of the group.

start(Id) ->

Self = self(),

{ok, spawn_link(fun()-> init(Id, Self) end)}.

5



init(Id, Master) ->

leader(Id, Master, [], [Master]).

Starting a node that should join an existing group is only slightly more
problematic. We need to send a {join, Master, self()} message to a
node in the group and wait for an invitation. The invitation is delivered as
a view message containing everything we need to know. The initial state is
of course as a slave.

start(Id, Grp) ->

Self = self(),

{ok, spawn_link(fun()-> init(Id, Grp, Self) end)}.

init(Id, Grp, Master) ->

Self = self(),

Grp ! {join, Master, Self},

receive

{view, [Leader|Slaves], Group} ->

Master ! {view, Group},

slave(Id, Master, Leader, Slaves, Group)

end.

2.4 the application process

To do some experiment we create worker that uses a gui to describe its state.
A worker and gui is given in the end of this paper. Compile the system and
do some experiments to see that you can create a group and add some peers.

3 handling failure

We will build up our fault tolerance gradually. First we will make sure that
we detect crashes, then to make sure that a new leader is elected an then
make sure that the layer preserves the properties of the atomic multicast.
Keep gms1 as a reference and call the adapted module gms2.

3.1 failure detectors

We will use the Erlang built in support to detect and report that processes
have crashed. A process can monitor another node an if that nodes dies
a message will be received. For now we will assume that the monitors are
perfect i.e. they will eventually report the crash of a node and they will
never report the death of a node that has not died.

6



We will also assume that the message that inform a process about a
death of a process is the last message that it will see from the node. The
message will thus be received in FIFO order as any regular message.

The question we first need to answer is, who should monitor who? In
our architecture we need not report new views when a slave dies and there
is nothing to prevent a dead slave to be part of a view so we will keep things
simple; the only node that will be monitored is the leader. A slave that
detects that a leader has died will move to an election state.

This is implemented by first adding a call to erlang:monitor/2 in the
initialization of the slave:

erlang:monitor(process, Leader)

and a new clause in the state of the slave:

{’DOWN’, _Ref, process, Leader, _Reason} ->

election(Id, Master, Slaves, Group);

In the election state the process will select the first node in its lists of
peers and elect this as the leader. It could of course be that the process finds
itself being the first node and it will thus become the leader of the group.

election(Id, Master, Slaves, [_|Group]) ->

Self = self(),

case Slaves of

[Self|Rest] ->

bcast(Id, {view, Slaves, Group}, Rest),

Master ! {view, Group},

leader(Id, Master, Rest, Group);

[Leader|Rest] ->

erlang:monitor(process, Leader),

slave(Id, Master, Leader, Rest, Group)

end.

One thing that we have to pay attention to is what we should do if, as a
slave, receive the view message from the new leader before we have noticed
that the old leader is dead. Should we refuse to handle view messages unless
we have seen the Down message from the leader or should we happily receive
accept the new view and tehn ignore trailing Down messages.

Since the leader can crash it could be that a node that wants to join the
group will never receive a reply. The message could be forwarded to a dead
leader and the joining node is never informed of the fact that its request
was lost. We simply add a timeout when waiting for an invitation to join
the group.

7



after ?timeout ->

Master ! {error, "no reply from leader"}

That is it we can now both add new nodes to the system and survive
even if nodes crash. That was not that hard was it? Do some experiments
to see that it works and then ship the product.

3.2 missing messages

Is seams to be too easy and unfortunately it is. To show that it is not working
we can change the bcast/3 procedure and introduce a random crash. We
define a constant arghh that defines the risk of crashing. A value of 100
means that a process will crash in average once in a hundred attempts. The
definition of bcast/3 now looks like this:

bcast(Id, Msg, Nodes) ->

lists:foreach(fun(Node) -> Node ! Msg, crash(Id) end, Nodes).

crash(Id) ->

case random:uniform(?arghh) of

?arghh ->

io:format("leader ~w: crash~n", [Id]),

exit(no_luck);

_ ->

ok

end.

We also add seeding of the random number generator when starting a
process so that we will not have all processes crashing at the same time.
The initialization is for example done as follows, the slave will be initialized
in a similar manner.

start(Id) ->

Rnd = random:uniform(1000),

Self = self(),

{ok, spawn_link(fun()-> init(Id, Rnd, Self) end)}.

init(Id, Rnd, Master) ->

random:seed(Rnd, Rnd, Rnd),

leader(Id, Master, [], [Master]).

Run some experiments and see if you can have the state of the workers
become out of synch. What is happening?

8



3.3 reliable multicast

To remedy the problem we could replace the basic multicaster with a reliable
multicaster. A process that would forward all messages before delivering
them to the higher layer. Using a vanilla reliable multicaster would however
be very costly, we could try a smarter solution.

Assume that we keep a copy of the last message that we have seen from
the leader. If we detect the death of the leader it could be that it died
during the basic multicast procedure and that some nodes have not seen the
message. We will now make an assumption that we will discuss later:

• Messages are reliably delivered and thus,

• if the leader sends a message to A and then B, and B receives the
message, then also A will receive the message.

The leader is sending messages to the peers in the order that they occur
in the list of peers. If anyone receives a message then the first peer in the
list receives the message. This means that only the next leader needs to
resend the message.

This will of course introduce the possibilities of doublets of messages
being received. In order to detect this we will number all messages and only
deliver new messages to the application layer.

Lets go through the changes that we need to make and create a new
module gms3 that implements these changes.

• slave(Id, Master, Leader, N, Last, Slaves, Group): the slave
procedure is extended with two arguments: N and Last. N is the
expected sequence number of the next message and Last is a copy
of the last message (a regular message or a view) received from the
leader.

• election(Id, Master, N, Last, Slaves, Group): the election pro-
cedure is extended with the same two arguments.

• leader(Id, Master, N, Slaves): the leader procedure is extended
with the the argument N, the sequence number of the next message
(regular message or view) to be sent.

The messages are also changed and will now contain the sequence num-
ber.

• {msg, N, Msg}: a regular message with a sequence number.

• {view, N, Peers, Group}: a view message with a sequence number.

9



We must also add clauses to the slave to accept and ignore duplicate
messages. If we do not remove these from the message queue they will add
up and after a year generate a very hard to handle trouble report.

When discarding messages we discard messages we only want to discard
messages that we have seen i.e. messages with a sequence number less than
N . We can do this by using the when construction. For example:

{msg, I, _} when I < N ->

slave(Id, Master, Leader, N, Last, Slaves, Group);

You might wonder how a message possibly could arrive early but there
is a a small window where this could actually happen.

The crucial part is then in the election procedure where the elected leader
will forward the last received message to all peers in the group. Hopefully
this will be enough to keep slaves synchronized.

bcast(Id, Last, Rest),

This completes the transition and gms3 should be ready for release.

3.4 some experiments

Run some experiments and create a large group spanning several computers.
Can we keep a group rolling by adding more nodes as existing nodes die?

Assuming all test went well we’re ready to ship the product. There is
however one thing we need to mention and that is that our implementa-
tion does not work. Well, it sort of works depending on what the Erlang
environment guarantees and how strong our requirements are.

4 what could possibly go wrong

The first thing we have to realize is what guarantees the Erlang system
actually gives on message sending. The specifications only guarantee that
messages are delivered in FIFO order, not that they actually do arrive. We
have built our system relying on reliable delivery of messages, something
that is not guaranteed.

How would we have to change the implementation to handle the possibly
lost messages? How would this impact performance?

The second reason why things will not work is that we rely on that the
Erlang failure detector is perfect i.e. that it will never suspect any correct
node for having crashed. Is this really the case? Can we adapt the system so
that it will behave correctly if it does make progress, even though it might
not always make progress?

The third reason why things do not work is that we could have a situation
where one uncorrect node delivers a message that will not be delivered by

10



any correct node. This could happen even if we had reliable send operations
and perfect failure detectors. How could this happen and how likely is it
that it does? What would a solution look like?

11



gms1.erl

-module(gms1).

-export([start/1, start/2]).

start(Id) ->

Self = self(),

{ok, spawn_link(fun()-> init(Id, Self) end)}.

init(Id, Master) ->

leader(Id, Master, [], [Master]).

start(Id, Grp) ->

Self = self(),

{ok, spawn_link(fun()-> init(Id, Grp, Self) end)}.

init(Id, Grp, Master) ->

Self = self(),

Grp ! {join, Master, Self},

receive

{view, [Leader|Slaves], Group} ->

Master ! {view, Group},

slave(Id, Master, Leader, Slaves, Group)

end.

slave(Id, Master, Leader, Slaves, Group) ->

receive

{mcast, Msg} ->

%%io:format("gms ~w: received {mcast, ~w} in state ~w~n", [Id, Msg, N]),

Leader ! {mcast, Msg},

slave(Id, Master, Leader, Slaves, Group);

{join, Wrk, Peer} ->

%%io:format("gms ~w: forward join from ~w to leader~n", [Id, Peer]),

Leader ! {join, Wrk, Peer},

slave(Id, Master, Leader, Slaves, Group);

{msg, Msg} ->

%%io:format("gms ~w: deliver msg ~w in state ~w~n", [Id, Msg, N]),

Master ! Msg,

slave(Id, Master, Leader, Slaves, Group);

{view, [Leader|Slaves2], Group2} ->

%%io:format("gms ~w: received view ~w ~w~n", [Id, N, View]),

Master ! {view, Group2},

slave(Id, Master, Leader, Slaves2, Group2);

12



stop ->

ok;

Error ->

io:format("gms ~w: slave, strange message ~w~n", [Id, Error])

end.

leader(Id, Master, Slaves, Group) ->

receive

{mcast, Msg} ->

%%io:format("gms ~w: received {mcast, ~w} in state ~w~n", [Id, Msg, N]),

bcast(Id, {msg, Msg}, Slaves),

Master ! Msg,

leader(Id, Master, Slaves, Group);

{join, Wrk, Peer} ->

%%io:format("gms ~w: forward join from ~w to master~n", [Id, Peer]),

Slaves2 = lists:append(Slaves, [Peer]),

Group2 = lists:append(Group, [Wrk]),

bcast(Id, {view, [self()|Slaves2], Group2}, Slaves2),

Master ! {view, Group2},

leader(Id, Master, Slaves2, Group2);

stop ->

ok;

Error ->

io:format("gms ~w: leader, strange message ~w~n", [Id, Error])

end.

bcast(_Id, Msg, Nodes) ->

lists:foreach(fun(Node) -> Node ! Msg end, Nodes).

13



worker.erl

-module(worker).

-export([start/4, start/5]).

-define(change, 20).

-define(color, {0,0,0}).

start(Id, Module, Rnd, Sleep) ->

spawn(fun() -> init(Id, Module, Rnd, Sleep) end).

init(Id, Module, Rnd, Sleep) ->

{ok, Cast} = apply(Module, start, [Id]),

Color = ?color,

init_cont(Id, Rnd, Cast, Color, Sleep).

start(Id, Module, Rnd, Peer, Sleep) ->

spawn(fun() -> init(Id, Module, Rnd, Peer, Sleep) end).

init(Id, Module, Rnd, Peer, Sleep) ->

{ok, Cast} = apply(Module, start, [Id, Peer]),

{ok, Color} = join(Id, Cast),

init_cont(Id, Rnd, Cast, Color, Sleep).

join(Id, Cast) ->

receive

{view, _} ->

Ref = make_ref(),

Cast ! {mcast, {state_request, Ref}},

state(Id, Ref);

{error, Reason} ->

{error, Reason}

end.

state(Id, Ref) ->

receive

{state_request, Ref} ->

receive

{state, Ref, Color} ->

{ok, Color}

end;

_Ignore ->

14



state(Id, Ref)

end.

init_cont(Id, Rnd, Cast, Color, Sleep) ->

random:seed(Rnd, Rnd, Rnd),

Title = "Worker: " ++ integer_to_list(Id),

Gui = gui:start(Title, self()),

Gui ! {color, Color},

worker(Id, Cast, Color, Gui, Sleep),

Cast ! stop,

Gui ! stop.

worker(Id, Cast, Color, Gui, Sleep) ->

Wait = if Sleep == 0 -> 0; true -> random:uniform(Sleep) end,

receive

{change, N} ->

Color2 = change_color(N, Color),

Gui ! {color, Color2},

worker(Id, Cast, Color2, Gui, Sleep);

{state_request, Ref} ->

Cast ! {mcast, {state, Ref, Color}},

worker(Id, Cast, Color, Gui, Sleep);

{state, _, _} ->

worker(Id, Cast, Color, Gui, Sleep);

{join, Peer, Gms} ->

Cast ! {join, Peer, Gms},

worker(Id, Cast, Color, Gui, Sleep);

{view, _} ->

worker(Id, Cast, Color, Gui, Sleep);

stop ->

ok;

Error ->

io:format("strange message: ~w~n", [Error]),

worker(Id, Cast, Color, Gui, Sleep)

after Wait ->

Cast ! {mcast, {change, random:uniform(?change)}},

15



worker(Id, Cast, Color, Gui, Sleep)

end.

%% rotate RGB and add N

change_color(N, {R,G,B}) ->

{G, B, ((R+N) rem 256)}.

16



gui.erl

-module(gui).

-define(width, 200).

-define(height, 200).

-export([start/2]).

-include_lib("wx/include/wx.hrl").

start(Title, Master) ->

spawn_link(fun() -> init(Title, Master) end).

init(Title, Master) ->

Window = make_window(Title),

loop(Window, Master).

make_window(Title) ->

Server = wx:new(), %Server will be the parent for the Frame

Frame = wxFrame:new(Server, -1, Title, [{size,{?width, ?height}}]),

wxFrame:setBackgroundColour(Frame, ?wxBLACK),

Window = wxWindow:new(Frame, ?wxID_ANY),

wxFrame:show(Frame),

wxWindow:setBackgroundColour(Window, ?wxBLACK),

wxWindow:show(Window),

%% monitor closing window event

wxFrame:connect(Frame, close_window),

Window.

loop(Window, Master)->

receive

%% check if the window was closed by the user

#wx{event=#wxClose{}} ->

wxWindow:destroy(Window),

Master ! stop,

ok;

{color, Color} ->

color(Window, Color),

loop(Window, Master);

stop ->

ok;

Error ->

io:format("gui: strange message ~w ~n", [Error]),

loop(Window, Master)

end.

17



color(Window, Color) ->

wxWindow:setBackgroundColour(Window, Color).

18


	Introduction
	1 The architecture
	1.1 view synchrony
	1.2 the leader
	1.3 a slave
	1.4 the election
	1.5 the application layer

	2 the first implementation
	2.1 the leader process
	2.2 a slave
	2.3 initialization
	2.4 the application process

	3 handling failure
	3.1 failure detectors
	3.2 missing messages
	3.3 reliable multicast
	3.4 some experiments

	4 what could possibly go wrong
	gms1.erl
	worker.erl
	gui.erl

