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In this lecture we will consider:

0 Basic Definitions and Properties
e Strongly Typical Sequences
e Weakly Typical Sequences

Q Literature
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Some Notation

@ Upper case letters denote random variables (RV), e.g., X

@ Lower case letters denote realizations of RV or constants: X
takes realization x

@ Script letters denote sets: X is defined on X and x € X
@ P{event} denotes probability of the event

@ px denotes probability mass function (pmf) or probability density
function (pdf) of RV X: px(x) = P{X = x} (subindex x is dropped
where RV is clear)

@ Sx denotes the support of RV X, i.e, p(x) >0V s € Sx
@ [E{event} denotes expectation of the event

@ LHS := RHS means RHS defines LHS

@ Sequences: X}, := (X, Xm+1,---, Xn), m < n, X" := X}
@ log is base 2, unless specified otherwise
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Basic Definitions

e Entropy: H(X) £ - ¥, px(x) log, px(x)
@ average uncertainty associated with RV X

@ Conditional entropy: H(X|Y) = - )., , pxv(x, y) log, pxy(xly)
e average uncertainty associated with RV X given RV Y

o Differential entropy: h(X) = - fo px(x)log, px(x)dx
e For a Gaussian RV X ~ N(y, 0%) we have h(X) = 1 log(2mes?)
e Cond. diff. entropy: h(X|Y) = — foy pxy(x, y)log, pxyy (xly)d(x, y)

@ Mutual information: I(X;Y) = H(X) - H(X|Y) = H(Y) — H(Y|X)

@ how much observation of RV Y informs us about RV X
e For continuous RVs: I(X;Y) = h(X) — k(X]Y)
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Basic Properties

@ Chain rule: H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X]Y)
@ Conditioning does not increase entropy: H(Y|X) < H(Y) with
equality if and only if (iff) X and Y are independent.

@ Independence bound for entropy:
H(X1,Xp,...,Xy) < Z H(X;) with equality iff X;,i=1,2,...,n are
mutually mdependent

Similar properties hold for differential entropy.

@ Mutual Information I(X; Y) is a non-negative function of p(x, y),
concave in p(x) for fixed p(ylx), and convex in p(ylx) for fixed p(x).

@ Chainrule: I(X,Y;Z) = [(X;Z) + I(Y; Z|X)
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Markov Chain

Definition Markov Chain

RVs X and Y are conditionally independent given Z, write X - Z - Y,
if
PX|yz(x|y, Z) = PX|Z(JC|Z) whenever Pyz(y, Z) > 0.

Useful properties:
Q@ Symmetry: X-7Z-Y=Y-7Z-X
© Decomposition: X-Z- (W)= X-Z-Y
© Weakunion: X-7Z—-(Y,W)=X-(ZW)-Y
© Contraction: X-Z-Yand X - (Z,Y)-W=X-Z-(Y,W)
@ Intersection: If Pwxyz(w,x,y,z) > 0 for all w, x, y,z and
X-ZY)y-Wand X-(ZW)-Y=X-Z-(Y,W)

@ Data Proc. Ineq.: If X —Z - Y, then I(X; Z) = I(X;Y).

KTH course: FEO3320 Information Theoretic Security ©Tobias Oechtering, Somayeh Salimi 5/14



Introduction Typical Sequences

4 sequences of length 18:

(@) 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
®) 1,0,1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0
() 0,0,0,1,1,0,0,1,0,0,1,1,0,0,0,1,1,0
@ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1.

One sequence was generated by a random number generator,
binary RV X with Px(0) = 2/3 and Px(1) = 1/3.
Probability of each sequence:

(@) (2/3)"° (b) 2/3)”-(1/3)" () 2/3)"-(1/3) (@) (1/3)"®

Question: Which sequence would you intuitively guess? Why?
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Strongly Typical Sequences

N(a; x™) denotes the number of occurrences of a € X in x" € X". )

@ Ex.: For x" =(0,0,1,0,1) we have N(0; x") = 3 and N(1;x") = 2.
@ m(alx") := % denotes the empirical pmf (or type) of x".
@ Ex.:x"=(0,0,1,0,1) and y* = (1,0,0,0, 1) are of the same type

Strongly Typical Sequences

x" € X" is strongly ¢-typical with respect to pmf Px(x) if N(a; x") =0
fora ¢ Sx and

'N(a; x™)

&
< — forae Sx.
n

— X

- px(a)

‘];(”)(X) (or T, g(")(PX)) denotes the set of strongly e-typical sequences.
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Asymptotic Equipartition Property (AEP)

Theorem: Strong Asymptotic Equipartition Property (AEP)

For ¢ sufficiently small, x" € 7")(X), and X" iid~ Px we have
o 2—n(1+e)H(X) < PX"(xn) < 2—n(1—s)H(X)
Q (1- 6€(n))2n(1—e)H(X) < |’]’5(”)(X)| < pn(l+e)H(X)
Q (1-6.(n) <PX" e T(X) <1

where 6.(n) — 0 for fixed e >0 as n — co.

KTH course: FEO3320 Information Theoretic Security ©Tobias Oechtering, Somayeh Salimi 8/14



Joint Strongly Typical Sequences

@ Sequences x" and y" are jointly strongly ¢-typical wrt Pxy if
N(a, b;x",y") = 0 for (a,b) ¢ Sxy and
&

— pxy(x, ]/)' < —— for(a,b) € Sxy.

'N(a, b;x", y")
XY

n

o 7(X,Y) (or T (Pxy)) denotes the jointly strongly e-typical set

Joint Typicality Lemma

For 0 < &1 < & sufficiently small, x" € 7'5(?)(PX), and Y" iid~ Py with
Px and Py marginal distributions of Pxy, then we have

(180, ey (m)2 MU R222HO) < P, Y7) € T (Pycy)} < 270G 2e2HC

where 0, ¢,(1n) — 0 for fixed e >0 as n — oo.

~

)

v
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Conditional Typicality Lemma

@ The next lemma and it derivations (Berger's Markov Lemma)
cannot be proved for weakly typical sequences.

Conditional Typicality Lemma

Given (X, Y) with pmf Pxy. Let x" € ‘7’5?)()() and Y drawn according

to [T2, Pyix(yilx;). Then for every e > e,

P{(x", Y) e T(X,Y)} > 1 asn — c.

@ Markov Lemma: Given RVs (X, Y, Z) with X — Y — Z. Let
(x",y") € 7'8(;1)(X, Y). f Z" ~ TT'L; pzy(zilyi), then for &1 > &

P{(x", y", 2" e TOUX, Y, Z)) > 1 asn — co.

KTH course: FEO3320 Information Theoretic Security ©Tobias Oechtering, Somayeh Salimi

10/14



Weakly Typical Sequences

@ AEP: Let X; iid~ Px, then the weak law of large numbers gives

—% log P(X1,X3,...,X,) = H(X) in probability

Definition: Weakly Typical Sequences

For e > 0 sequence x" € X" is weakly e-typical wrt Px if

‘—% log Pxn(x") — H(X)' <e. (1)

AN(X) (or A" (Px)) denotes the set of weakly e-typical sequences. |

@ Empirical entropies should be ¢-close to the true entropies
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Properties

@ Equivalently to (1): 27HX)+&) < Py, (x) < 27HX)—¢)

Properties of weakly typical sequences

Q P{(Xy,Xp,...,X,) € &Z{E")(X)} > 1 — ¢ for n sufficiently large
Q A" (X)| < 2709+
Q 1AM (X)| > (1 — €)2"HX-9) for  sufficiently large
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Jointly Weakly Typical Sequences

@ (x",y") are jointly weakly typical sequences wrt joint pmf Pxy
with marginal pmfs Px and Py if x" € A (Px), y" € A" (Py),
and

1
‘_E log Pxnyn(x", y") — H(X.Y)| < €.

) &Zlﬁ.”)(PXy) denotes the set of jointly weakly typical sequences.

Q@ P((X",Y") e AV (Pxy)} - 1asn — oo
Q@ AL (Pxy)| < 21HED+)

© Let X" and Y” be iid according to marginal Px and Py of joint
pmf Pxy, then for sufficiently large n we have

(1 _ g)z—n(I(X,'Y)+3e) < H){(Xn, Yn) c ﬂgn)(ny)} < z_n(I(X;y)_g,g)

v
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Resource and Reading Assignment

@ Resources:
e Appendix A of Information Theoretic Security, by Y. Liang, V.
Poor, S. Shamai, NOW Foundations and Trends.
e Elements of Information Theory, by T. Cover, J. Thomas, Wiley.
@ Further reading:
o Network Information Theory, by A. El Gamal, Y.-H. Kim,
Cambridge.

e Information Theory and Network Coding, by R. Yeung, Springer.
e Topics in Multi-User Inforamtion Theory by G. Kramer, NOW
Foundations and Trends.

@ Reading Assignment:
e chapter 7 of Bloch’s book (system aspects), if you have...
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