## IT Basics – Typical Sequences Course: FEO3320 Information Theoretic Security

#### Tobias Oechtering, Somayeh Salimi



Royal Institute of Technology (KTH), School of EE and ACCESS Center, Communication Theory Lab Stockholm, Sweden

Sep 19, 2013

## In this lecture we will consider:



Basic Definitions and Properties







### Some Notation

- Upper case letters denote random variables (RV), e.g., X
- Lower case letters denote realizations of RV or constants: *X* takes realization *x*
- Script letters denote sets: *X* is defined on *X* and  $x \in X$
- P{event} denotes probability of the event
- *p*<sub>X</sub> denotes probability mass function (pmf) or probability density function (pdf) of RV X: *p*<sub>X</sub>(*x*) = ℙ{X = *x*} (subindex <sub>X</sub> is dropped where RV is clear)
- $S_X$  denotes the support of RV X, i.e,  $p(x) > 0 \forall s \in S_X$
- E{event} denotes expectation of the event
- LHS := RHS means RHS defines LHS
- Sequences:  $X_m^n := (X_m, X_{m+1}, ..., X_n), m \le n, X^n := X_1^n$
- log is base 2, unless specified otherwise

### **Basic Definitions**

- Entropy:  $H(X) \triangleq -\sum_{x} p_X(x) \log_2 p_X(x)$ 
  - average uncertainty associated with RV X
- Conditional entropy:  $H(X|Y) \triangleq -\sum_{x,y} p_{XY}(x,y) \log_2 p_{X|Y}(x|y)$ 
  - average uncertainty associated with RV X given RV Y
- Differential entropy:  $h(X) \triangleq -\int_{\mathcal{S}_X} p_X(x) \log_2 p_X(x) dx$ 
  - For a Gaussian RV  $X \sim \mathcal{N}(\mu, \sigma^2)$  we have  $h(X) = \frac{1}{2}\log(2\pi e\sigma^2)$
  - Cond. diff. entropy:  $h(X|Y) \triangleq -\int_{\mathcal{S}_{XY}} p_{XY}(x, y) \log_2 p_{X|Y}(x|y) d(x, y)$
- Mutual information:  $I(X; Y) \triangleq H(X) H(X|Y) = H(Y) H(Y|X)$ 
  - how much observation of RV Y informs us about RV X
  - For continuous RVs:  $I(X; Y) \triangleq h(X) h(X|Y)$

### **Basic Properties**

- Chain rule: H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)
- Conditioning does not increase entropy:  $H(Y|X) \le H(Y)$  with equality if and only if (iff) X and Y are independent.
- Independence bound for entropy:

 $H(X_1, X_2, ..., X_n) \le \sum_{i=1}^n H(X_i)$  with equality iff  $X_i$ , i = 1, 2, ..., n are mutually independent.

Similar properties hold for differential entropy.

- Mutual Information I(X; Y) is a non-negative function of p(x, y), concave in p(x) for fixed p(y|x), and convex in p(y|x) for fixed p(x).
- Chain rule: I(X, Y; Z) = I(X; Z) + I(Y; Z|X)

### Markov Chain

### **Definition Markov Chain**

RVs *X* and *Y* are conditionally independent given *Z*, write X - Z - Y, if

 $P_{X|YZ}(x|y,z) = P_{X|Z}(x|z)$  whenever  $P_{YZ}(y,z) > 0$ .

#### **Useful properties:**

**1** Symmetry: 
$$X - Z - Y \Rightarrow Y - Z - X$$

2 Decomposition:  $X - Z - (Y, W) \Rightarrow X - Z - Y$ 

Solution Weak union:  $X - Z - (Y, W) \Rightarrow X - (Z, W) - Y$ 

- Contraction: X Z Y and  $X (Z, Y) W \Rightarrow X Z (Y, W)$
- Solution If  $P_{W,X,Y,Z}(w, x, y, z) > 0$  for all w, x, y, z and X (Z, Y) W and  $X (Z, W) Y \Rightarrow X Z (Y, W)$ 
  - Data Proc. Ineq.: If X Z Y, then  $I(X; Z) \ge I(X; Y)$ .

## Introduction Typical Sequences

4 sequences of length 18:

- $(b) \quad 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0$
- $(c) \quad 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0\\$

One sequence was generated by a random number generator, binary RV *X* with  $P_X(0) = 2/3$  and  $P_X(1) = 1/3$ . Probability of each sequence:

(a)  $(2/3)^{18}$  (b)  $(2/3)^9 \cdot (1/3)^9$  (c)  $(2/3)^{11} \cdot (1/3)^7$  (d)  $(1/3)^{18}$ 

Question: Which sequence would you intuitively guess? Why?

# Strongly Typical Sequences

 $N(a; x^n)$  denotes the number of occurrences of  $a \in X$  in  $x^n \in X^n$ .

- Ex.: For  $x^n = (0, 0, 1, 0, 1)$  we have  $N(0; x^n) = 3$  and  $N(1; x^n) = 2$ .
- $\pi(a|x^n) := \frac{N(a;x^n)}{n}$  denotes the **empirical pmf (or type)** of  $x^n$ .
- Ex.:  $x^n = (0, 0, 1, 0, 1)$  and  $y^n = (1, 0, 0, 0, 1)$  are of the same type

#### Strongly Typical Sequences

 $x^n \in \mathcal{X}^n$  is *strongly*  $\varepsilon$ -*typical* with respect to pmf  $P_X(x)$  if  $N(a; x^n) = 0$  for  $a \notin S_X$  and

$$\left|\frac{N(a;x^n)}{n} - p_X(a)\right| \le \frac{\varepsilon}{|\mathcal{X}|} \quad \text{for } a \in \mathcal{S}_X.$$

 $\mathcal{T}_{\varepsilon}^{(n)}(X)$  (or  $\mathcal{T}_{\varepsilon}^{(n)}(P_X)$ ) denotes the set of strongly  $\varepsilon$ -typical sequences.

## Asymptotic Equipartition Property (AEP)

### Theorem: Strong Asymptotic Equipartition Property (AEP)

For  $\varepsilon$  sufficiently small,  $x^n \in \mathcal{T}_{\varepsilon}^{(n)}(X)$ , and  $X^n$  iid~  $P_X$  we have

$$2^{-n(1+\varepsilon)H(X)} \le p_{X^n}(x^n) \le 2^{-n(1-\varepsilon)H(X)}$$

$$(1 - \delta_{\varepsilon}(n))2^{n(1-\varepsilon)H(X)} \le |\mathcal{T}_{\varepsilon}^{(n)}(X)| \le 2^{n(1+\varepsilon)H(X)}$$

$$(1 - \delta_{\varepsilon}(n)) < \mathbb{P}\{X^n \in \mathcal{T}_{\varepsilon}^{(n)}(X)\} \le 1$$

where  $\delta_{\varepsilon}(n) \to 0$  for fixed  $\varepsilon > 0$  as  $n \to \infty$ .

# Joint Strongly Typical Sequences

• Sequences  $x^n$  and  $y^n$  are jointly strongly  $\varepsilon$ -typical wrt  $P_{XY}$  if  $N(a, b; x^n, y^n) = 0$  for  $(a, b) \notin S_{XY}$  and

$$\frac{N(a,b;x^n,y^n)}{n} - p_{XY}(x,y) \bigg| \le \frac{\varepsilon}{|\mathcal{XY}|} \quad \text{for } (a,b) \in \mathcal{S}_{XY}.$$

•  $\mathcal{T}_{\varepsilon}^{(n)}(X, Y)$  (or  $\mathcal{T}_{\varepsilon}^{(n)}(P_{XY})$ ) denotes the jointly strongly  $\varepsilon$ -typical set

#### Joint Typicality Lemma

For  $0 < \varepsilon_1 < \varepsilon_2$  sufficiently small,  $x^n \in \mathcal{T}_{\varepsilon_1}^{(n)}(P_X)$ , and  $Y^n$  iid~  $P_Y$  with  $P_X$  and  $P_Y$  marginal distributions of  $P_{XY}$ , then we have

$$(1 - \delta_{\varepsilon_1, \varepsilon_2}(n)) 2^{-n(I(X;Y) + 2\varepsilon_2 H(Y))} \le \mathbb{P}\{(x^n, Y^n) \in \mathcal{T}_{\varepsilon_2}^{(n)}(P_{XY})\} \le 2^{-n(I(X;Y) - 2\varepsilon_2 H(Y))}$$

where  $\delta_{\varepsilon_1,\varepsilon_2}(n) \to 0$  for fixed  $\varepsilon > 0$  as  $n \to \infty$ .

### **Conditional Typicality Lemma**

 The next lemma and it derivations (Berger's Markov Lemma) cannot be proved for weakly typical sequences.

#### Conditional Typicality Lemma

Given (X, Y) with pmf  $P_{XY}$ . Let  $x^n \in \mathcal{T}_{\varepsilon_1}^{(n)}(X)$  and  $Y^n$  drawn according to  $\prod_{i=1}^n P_{Y|X}(y_i|x_i)$ . Then for every  $\varepsilon > \varepsilon_1$ ,

$$\mathbb{P}\{(x^n, Y^n) \in \mathcal{T}_{\varepsilon}^{(n)}(X, Y)\} \to 1 \text{ as } n \to \infty.$$

• Markov Lemma: Given RVs (X, Y, Z) with X - Y - Z. Let  $(x^n, y^n) \in \mathcal{T}_{\varepsilon_2}^{(n)}(X, Y)$ . If  $Z^n \sim \prod_{i=1}^n p_{Z|Y}(z_i|y_i)$ , then for  $\varepsilon_1 > \varepsilon_2$ 

$$\mathbb{P}\{(x^n, y^n, Z^n) \in \mathcal{T}^{(n)}_{\varepsilon_1}(X, Y, Z)\} \to 1 \quad \text{as } n \to \infty.$$

# Weakly Typical Sequences

• **AEP:** Let  $X_i$  iid~  $P_X$ , then the weak law of large numbers gives

$$-\frac{1}{n}\log P(X_1, X_2, \dots, X_n) \to H(X) \quad \text{in probability}$$

#### Definition: Weakly Typical Sequences

For  $\varepsilon > 0$  sequence  $x^n \in \mathcal{X}^n$  is weakly  $\varepsilon$ -typical wrt  $P_X$  if

$$\left|-\frac{1}{n}\log P_{X^n}(x^n) - H(X)\right| \le \varepsilon.$$
(1)

 $\mathcal{A}_{\varepsilon}^{(n)}(X)$  (or  $\mathcal{A}_{\varepsilon}^{(n)}(P_X)$ ) denotes the set of weakly  $\varepsilon$ -typical sequences.

#### Empirical entropies should be ε-close to the true entropies

### **Properties**

• Equivalently to (1):  $2^{-n(H(X)+\varepsilon)} \le P_{X^n}(x^n) \le 2^{-n(H(X)-\varepsilon)}$ 

#### Properties of weakly typical sequences

- $\mathbb{P}\{(X_1, X_2, \dots, X_n) \in \mathcal{H}_{\varepsilon}^{(n)}(X)\} > 1 \varepsilon \text{ for } n \text{ sufficiently large}$
- $2 |\mathcal{A}_{\varepsilon}^{(n)}(X)| \le 2^{n(H(X)+\varepsilon)}$
- $|\mathcal{A}_{\varepsilon}^{(n)}(X)| \ge (1 \varepsilon)2^{n(H(X) \varepsilon)}$  for *n* sufficiently large

# Jointly Weakly Typical Sequences

•  $(x^n, y^n)$  are jointly weakly typical sequences wrt joint pmf  $P_{XY}$ with marginal pmfs  $P_X$  and  $P_Y$  if  $x^n \in \mathcal{A}_{\varepsilon}^{(n)}(P_X)$ ,  $y^n \in \mathcal{A}_{\varepsilon}^{(n)}(P_Y)$ , and

$$\left|-\frac{1}{n}\log P_{X^nY^n}(x^n,y^n)-H(X.Y)\right|\leq \varepsilon.$$

•  $\mathcal{R}_{\varepsilon}^{(n)}(P_{XY})$  denotes the set of jointly weakly typical sequences.

### Properties

$$|\mathcal{A}_{\varepsilon}^{(n)}(P_{XY})| \le 2^{n(H(X,Y)+\varepsilon)}$$

Solution Let  $\tilde{X}^n$  and  $\tilde{Y}^n$  be iid according to marginal  $P_X$  and  $P_Y$  of joint pmf  $P_{XY}$ , then for sufficiently large n we have

$$(1-\varepsilon)2^{-n(I(X;Y)+3\varepsilon)} \leq \mathbb{P}\{(\tilde{X}^n, \tilde{Y}^n) \in \mathcal{R}_{\varepsilon}^{(n)}(P_{XY})\} \leq 2^{-n(I(X;Y)-3\varepsilon)}$$

### **Resource and Reading Assignment**

#### Resources:

- Appendix A of *Information Theoretic Security*, by Y. Liang, V. Poor, S. Shamai, NOW Foundations and Trends.
- Elements of Information Theory, by T. Cover, J. Thomas, Wiley.

#### Further reading:

- Network Information Theory, by A. El Gamal, Y.-H. Kim, Cambridge.
- Information Theory and Network Coding, by R. Yeung, Springer.
- *Topics in Multi-User Inforamtion Theory* by G. Kramer, NOW Foundations and Trends.

#### Reading Assignment:

• chapter 7 of Bloch's book (system aspects), if you have...