
Last lecture (1) 
• Course info 

• Definition of plasma 

• Solar interior and atmosphere 

• Plasma physics 1 

Today’s lecture (2) 
• Plasma physics 2 

• Solar activity 



Examination 

1. Written examination 
(open book*), 30/10 

100 p 

2. Continous examination 
(mini-group works) 
 

25 p 

Grades: 
A:  111-125 p 
B:   96-110 p 
C:   81-95 p 
D:  66-80 p  
E:  50-65 p 

(Fx) 
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Written examination,  
30/10 2013, 14.00-19.00, B21, B22, B23, B24 
 
(*)  You may bring: 
 
• all the course material  
• any notes you have made 
• pocket calculator 
• mathematics and physics formula books or your favourite physics book 
• formula sheet 
 
(No computers are allowed, due to the possibility to communicate with the 
outside world.)  
 
Approx. 5 different problems (which may contain sub-problems).  
 
The character of the problems is such that to get a high score you will have to 
show that you have obtained a certain course goal, e.g. to make a reasonable 
order of magnitude estimate or figure out a simple model for some space 
physics phenomenon.  
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Continous examination 
Mini-group works 

5 mini-group works  
(5×5 p = 25 p) 
 
 
Approx. 1 h during Tutorials 1-5 

• A problem similar to those on 
the written examination is given  

• Groups of 3 (randomized).  
• Elect a secretary! 
• Write down a solution! 
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Litterature 
 

  
• C-G. Fälthammar, ”Space Physics” (compendium), 2nd 

Ed, Third Printing, 2001. 
 

• Larry Lyons, ”Space Plasma Physics”, from Encyclopedia 
of Physical Science and Technology, 3rd edition, 2002.  

 
• Lecture notes and extra material handed out during 

lectures. 
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Course home page 
KTH Social:  

 

https://www.kth.se/social/course/EF2240/ 

 
At the home page I will post new information continuously. 
Here you can also find lecture notes, exercises (and some 
solutions), etc.  
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Preliminary guest lecturer 

EF2240 Space Physics 2012 

Swedish astronaut Christer Fuglesang 
Lecture 10 



Today 

EF2240 Space Physics 2013 

Activity Date Time Room Subject Litterature 

L1 2/9 10-12 Q33 Course description, Introduction, The 
Sun 1, Plasma physics 1 

CGF Ch 1, 5, (p 
110-113) 

L2 3/9 15-17 Q31 The Sun 2, Plasma physics 2  CGF Ch 5 (p 114-
121), 6.3 

L3 9/9 10-12 Q33 Solar wind, The ionosphere and 
atmosphere 1, Plasma physics 3 

CGF  Ch 6.1, 2.1-
2.6, 3.1-3.2, 3.5,   
LL Ch III, Extra 
material 

T1 11/9 10-12 Q34 Mini-group work 1   
L4 16/9 15-17 Q33 The ionosphere 2, Plasma physics 4 CGF Ch 3.4, 3.7, 

3.8  
L5 18/9 15-17 Q21 The Earth’s magnetosphere 1, Plasma 

physics 5 
CGF 4.1-4.3, LL 
Ch I, II, IV.A 

T2 23/9 10-12 Q34 Mini-group work 2   
L6 25/9 10-12 M33 The Earth’s magnetosphere 2, Other 

magnetospheres 
CGF Ch 4.6-4.9, 
LL Ch V. 

L7 30/9 14-16 L51 Aurora, Measurement methods in 
space plasmas and data analysis 1 

CGF Ch 4.5, 10, LL 
Ch VI, Extra 
material 

T3 3/10 10-12 V22 Mini-group work 3   
L8 7/10 10-12 V22 Space weather and geomagnetic 

storms 
CGF Ch 4.4, LL Ch 
IV.B-C, VII.A-C 

T4 9/10 15-17 Q31 Mini-group work 4   
L9 11/10 10-12 M33 Interstellar and intergalactic plasma, 

Cosmic radiation, Swedish and 
international space physics research. 

CGF Ch 7-9 

T5 15/10 10-12 L51 Mini-group work 5   
L10 16/10 13-15 Q36 Guest lecture: Swedish astronaut 

Christer Fuglesang 
  

T6 17/10 15-17 Q31 Round-up   
Written 
examination 

30/10 14-19 B21-24     



Black-body radiation 

Black-body good approximation for opaque bodies 
where emitted light is much more likely to interact 
with the material of the source than to escape. 

Wien’s displacement law 

Stefan-Bolzmanns law 

32.90 10
peak T

λ
−×

=

4
SBJ Tσ=

(J = total energy radiated per unit 
area per unit time ) 
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The solar spectrum 

Non-blackbody 
contributions 
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Sun’s interior 
The proton cycle 

T = 15 · 106 K 
P = 4 · 1026 W 
(P/m ~ 1mW/kg) 
 

1 4 +
1 24 H He + 2e + 2 + 2eν γ→
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Energy transport in the sun 

Transport by radiation, which interacts 
with the dense solar matter (scattering 
and absorption/re-emission). 

I takes on average 200 000 years for a 
photon to reach the photosphere! 

Transport by convection 

~1000 km 
These convection 
cells are called 
granulation. 

At the photosphere the mean free path 
of the photons becomes so large that 
they can reach directly out into space. 
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Sun’s interior 

At the photosphere the mean free path 
of the photons becomes so large that 
they can reach directly out into space. 

pl Bp nk T=

As a consequence also the temperature, 
and pressure drops. 

Example of exponential density variation 
in balance between pressure and gravity 

/( / ) /Bz k T gm z H
m const e const eρ − −= ⋅ = ⋅
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Why is the chromosphere red?  

Hα 
656 nm 

Hβ 
486 nm 

Hγ 
434 nm 

Hydrogen spectrum 

T1 

T2 
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Corona 

• Temperature: up to 
2 MK 
 

• Density: 10-18 g/cm3 
– 10-24 g/cm3 
 

• Turns into the solar 
wind at high 
altitudes, without a 
sharp boundary. 
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The layers of the solar atmosphere 
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Black-body radiation 
32.90 10

peak T
λ

−×
=

For non-blackbody thermal 
light emitter (for example a thin 
gas) it is more complicated. 
Spectrum depends e.g. 
chemical composition, and 
how many atoms/molecules 
happen to be in state with high 
probability to decay and cause 
emission.  

Energy (and wavelength) of 
emitted quantum can still be 
approximated: 

 

Atomic energy levels 

~ BE k T

E hf=

~
B

hc
k T

λ
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(Fe IX/X) at 171 Å 

He II emission line at 304 Å 
Visible light ~ 6768 Å 

X-ray at 0.3-5 Å 
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Coronal loops 

What gives the 
loops this 
structure??? 
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Coronal loops 

Why does the plasma follow the magnetic field lines? 
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q= ×F v B

F
, 

Magnetized plasma  
 
Extremely common in space. 
 
In single particle description of 
plasma, the particles gyrate in 
the plane perpendicular to B. 
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Gyro motion 
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Gyro motion 

EF2240 Space Physics 2013 

Consider a positively charged particle in a 
magnetic field. 

Assume that the magnetic field is in the z-
direction. 

Constant velocity along z 

y 

x 
B = B z 

+ 
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y 

x 
B = B z 

+ 

Gyro motion 

and 
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Gyro motion 

y 

x 

B = B z 
+ 

v⊥ 

and 

So 

For a particle starting at time t=0 at (x0,0) with velocity (0,-v⊥) 
we get (by definition v0x, v0y, v⊥ > 0). 
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Then (because the force is all the time perpendicular to the velocity) 

Gyro motion 
y 

x 

B = B z 
+ 

v⊥ 
so 

So 

and 



Gyro (Larmor) radius 

q ⊥= ×F v BMagnetic force: 

2

ˆmv
ρ

⊥=F ρCentripetal force: 

⇔

mv
qB

ρ ⊥=

B v 

α 

sinv v α⊥ = ⋅

v⊥ 
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Gyro frequency 

⇒

g
qB
m

ω =

mv
qB

ρ ⊥=

vωρ ⊥=

2 fω π=
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Drift motion 
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y 

x 
B = B z 

+ 

Then 



Magnetized plasma 

A magnetic field drastically 
changes some of the plasma 
properties because the 
plasma particles are tightly 
bound to the magnetic field 
lines. 
 
It is difficult for the particles to 
move perpendicular to B, but 
easy to move along B. 
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Think about this: 

Can you think about a 
physical property of 
the plasma that varies 
with the direction? 

(Such a property is 
called anisotropic.) 
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Coronal loops 

Why does the plasma follow the magnetic field lines? 
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e- 



Gyro motion 
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Equipartion principle 
Statistically the kinetic energy is 
equally distributed along the three 
dimensions: 

 



Frozen in magnetic field lines 

This applies if the  magnetic Reynolds 
number is large: 

0 1m c cR l vµ σ= >>

An example of the 
collective behaviour 
of plasmas. 

In fluid description of 
plasma two plasma 
elements that are 
connected by a 
common magnetic 
field line at time t1 will 
be so at any other 
time t2 . 

EF2240 Space Physics 2013 



Maxwell’s equations 

0∇ ⋅ =B

t
∂

∇× = −
∂
BE

0 0 0 t
µ µ ε ∂

∇× = +
∂
EB j

Gauss’ law 

No magnetic 
monopoles 

Faraday’s law 

Ampére’s law 

Lorentz’ force equation 

( )q= + ×F E v B

Ohm’s law 

σ=j E

j 

yx z
AA A

x y z
∂∂ ∂

∇ ⋅ = + +
∂ ∂ ∂

A

, ,y yx xz z
A AA AA A

y z z x x y
∂ ∂ ∂ ∂∂ ∂

∇× = − − − ∂ ∂ ∂ ∂ ∂ ∂ 
A

Energy density 
2 2

0
0

,
2 2B E
B EW W ε
µ

= =

0

ρ
ε

∇ ⋅ =E
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Field transformations (relativistic) 

Relativistic transformations 
(perpendicular to the velocity u): 

x 

y 

S 
x’ 

y’ 

S’ 

u 

2 2
´

1 u c
+ ×

=
−

E u BE

( )2

2 2
´

1

c

u c

− ×
=

−

B u E
B

´= + ×E E u B

´=B B

For  u << c: 

induced 
electric field 

´= − ×E E u B



Frozen in magnetic flux PROOF 

( )

0 2

(1)
1(2)

(3)

c t

t

σ σ

µ

′= = + ×

∂
= ∇× −

∂
∂

= −∇×
∂

j E E v B
Ej B

B E

Ohm’s law 

Faraday’s law 

Ampère’s law 

(1) ⇒ 
σ

= − ×
jE v B

(3+1) ⇒ 
t σ

∂  = −∇× − × ∂  
B j v B

0t µ σ
 ∂ ∇×

= −∇× − × ∂  

B B v B(2) ⇒ 

( ) ( )

( ) ( )( )
0

2

0

1

1
t µ σ

µ σ

∂
= ∇× × − ∇× ∇× =

∂

∇× × − ∇ ∇ ⋅ − ∇

B v B B

v B B B

( ) 2

0

1
t µ σ

∂
= ∇× × + ∇

∂
B v B B
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Frozen in magnetic flux PROOF II 

( ) 2

0

1
t µ σ

∂
= ∇× × + ∇

∂
B v B B

A B 
Order of magnitude estimate: 

( )
0

2
2

0 0

1 m

v B
A L vL RBB

L

µ σ

µ σ µ σ

∆
∇× ×

= ≈ = ≡
∆

∇

v B

B

Magnetic Reynolds number Rm: 

Rm >> 1 ⇒ ( )
t

∂
= ∇× ×

∂
B v B

2

0

1
t µ σ

∂
= ∇

∂
B BRm << 1 ⇒ 

Frozen-in fields! 

Diffusion equation! 
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Frozen in magnetic flux PROOF III 

Rm >> 1 ⇒ ( )
t

∂
= ∇× ×

∂
B v B

Consider the change of magnetic 
flux Φ through a surface S with 
contour l which follows plasma 
motion 

S 
B 

c

S

dd d
dt t dt

ΦΦ ∂
= ⋅ +

∂∫
B S

S

dΦ = ⋅∫B S

cd
dt
Φ This term is due to change in 

the surface S due to plasma 
motion  

l has an area of ( )dt d⋅ ×v l

The flux through      is ( )dt d⋅ × ⋅v l B

c

l

d d
dt
Φ

= × ⋅ =∫ v l B

B v 

dl 
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Frozen in magnetic flux PROOF IV 

( )

c

l

l S

d d
dt

d d

Φ
= × ⋅ =

− × ⋅ = − ∇× × ⋅

∫

∫ ∫

v l B

v B l v B S

B v 

dl 
( )

( ) 0

S S

S

d d d
dt t

d
t

Φ ∂
= ⋅ − ∇× × ⋅ =

∂

∂ − ∇× × ⋅ = ∂ 

∫ ∫

∫

B S v B S

B v B S



0d
dt
Φ

=
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Frozen in magnetic field lines 

A  flux tube is defined by following B 
from the surface S. Due to the frozen-
in theorem the flux tube keeps its 
identity and the plasma in a flux tube 
stays in it for ever. 

In particular if we let the tube become 
infinitely thin we have the theorem of 
frozen-in field lines. 
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• Also known as Alfvén’s 
theorem 

• Hannes Alfvén (1908-1995), 
professor at KTH 

• Alfvén received the Nobel 
prize in 1970  
 

’for fundamental work and 
discoveries in magneto-
hydrodynamics with fruitful 
applications in different 
parts of plasma physics’ 
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Frozen in magnetic field lines: 
some history 



Magnetized plasma 

Different plasma populations (plasmas 
with different temperature and density) 
keep to their own field line, and thus 
“paint out” the magnetic field lines. 

So
la

r m
ag

ne
tic

 fi
el

d 
Northern lights (aurora) 

Coronal loop 
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Does the plasma follow the magnetic field 
(a) or the other way around (b)? 

Depends on relative 
energy density (pressure) 

pl Bp nk T=

2

02B
Bp
µ

=

pl

B

p
p

β =

1β >>1β <<
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Plasma beta 

Red β >> 1   The plasma 
dominates the magnetic field 

Blue β << 1   The magnetic field 
dominates the plasma  

β ~ 1   Some complicated in-
between behaviour 

Coronal loop 

B = 0.2 T 
n = 1023 m-3  (~1% of density at Earth surface) 
T = 6000 K 

Plasma (thermal) pressure/energy density: ppl = nkbT 

Magnetic pressure/energy density: pb = B2/2µ0 

pl

B

p
p

β =

Green 
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Red β ~ 1   Some complicated in-
between behaviour 

B = 0.2 T 
n = 1023 m-3  (~1% of density at Earth surface) 
T = 6000 K 

 

Plasma (thermal) pressure/energy density: ppl = nkbT = 

Magnetic pressure/energy density: pb = B2/2µ0 = 

 

 

23 2310 1.38 10 6000 8.3 kPa−⋅ ⋅ ⋅ ≈
2

7

0.2 16
2 4 10

kPa
π − ≈

⋅ ⋅
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Plasma beta 



Last Minute! 
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Last Minute! 
 

 
• What was the most important thing of today’s lecture? Why? 

 
• What was the most unclear or difficult thing of today’s lecture, 

and why? 
 

• Other comments 
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