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Chapter 9

Approximate Bayesian
Learning

Although the general approach to Bayesian learning is simple in principle,
it can lead to computational difficulties when applied to complex probabilis-
tic models. In Maximum-Likelihood learning of the parameters in hidden
Markov models or Gaussian mixture models, we also encountered similar
problems, and Ch. 7 showed that the Expectation Maximization algorithm
provides an elegant solution.

Typically, computational difficulties in Bayesian learning arise when we
want to derive posterior densities of model parameters in mixture models,
where the complete model includes hidden variables that control the choice
of mixture components as, for example, in a GMM or an HMM.

This chapter presents Variational Inference {(VI) as an approach that
can be used for Bayesian learning in those more complex situations. Bishop
(2006) gives a detailed discussion of VI and other approximate methods for
Bayesian learning, for example:

e Numerical sampling. Even if the exact posterior parameter distribu-
tion cannot be expressed in a closed form, it is possible to generate
random samples that follow the exact distribution. The samples can be
used, for example, to calculate predictive probabilities. The accuracy
can be very good, at the cost of large amounts of computation.

e Ezrpectation Propagation (EP). This is, like VI, an analytical method
to approximate the posterior parameter distribution. However, while
the VI approximation, in general, is most accurate near the peak of the
distribution, the EP concentrates on describing the global properties of
the distribution, such as its mean and covariance, but may conversely
be less accurate near the peak.

Here we focus on Variational Inference mainly because it often gives explicit
formulas that can be solved analytically, and because it is similar to EM.
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As we will see, VI can be regarded as a generalization of the “EM trick,”
introduced in Ch. 7. Like EM, we get an iterative optimization procedure
that converges to a locally optimal solution. Unlike EM, however, we are
able to stochastically model our uncertainty in the parameters and all other
unknowns.

9.1 Variational Inference — Notation

For a very general solution to this kind of problem, in this section Z =
(Z1,...,Zy) denotes a combined set of groups of hidden variables and
groups of other model parameters, all regarded as random variables. For the
HMM, for example, we might let Z, represent the sequence of discrete state
variables that we used to denote as § = (57,...,S¢), while Z5 might include
all the elements in the transition probability matrix that we used to call A,
and Z3 could include all the mean vectors of state-conditional Gaussian
output density functions, ete. Thus, some variable groups can have discrete
distributions, specified by probability mass functions, and other groups may
have continuous distributions.

As usual, the training procedure uses a sequence & = (xy,...,z7) of
observed feature vectors x; that are regarded as samples of corresponding
random vectors X;. The observed vectors in the sequence may be drawn
from identical or different distributions, statistically independent or depen-
dent of other variables in the sequence. All such model details are specified
by some variables in Z. Some variable group Z,, may include exactly T
elements, corresponding to the 7" observed vectors, whereas other parameter
groups may have a fixed size, regardless of the number of observed feature
vectors. One variable group Z; may have a size that corresponds to the
number of components in a mixture model, or the number of internal hid-
den states, and another variable group may control how many such mixture
components, or hidden states, that are actually needed in the model. In
short, Z collects everything that is unknown in the current situation.

Just as in the standard Bayesian approach, we formulate an explicit
conditional probability model fx|z(z | z) for the observations, given all
the model parameters and hidden variables. We also need a prior model
(density and/or mass) fz(z) for all the unknown variables and parameters.
The difficult step is to obtain a useful posterior distribution

fzix(z| z) < fx z(, 2) = fxz(z | 2)fz(2) (9.1)

Although this expression still looks quite simple, the problem is that we
would often like to obtain a separate posterior density for some of the pa-
rameter groups in Z = (Z,,..., Z ), independent of other groups of hidden
variables. For example, when training HMM parameters with the EM ap-
proach, the trained model A should not depend explicitly on the specific
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hidden state sequence that might have generated the training data, because
the model is to be applied to future test data, generated by other hidden
state sequences. In the exact Bayesian posterior of Eq. (9.1), all the groups
of parameters and hidden variables, gathered in Z, may still depend on each
other in some complex way, and it may be computationally intractable to
find the marginal distribution of, e.g., Z;, as

Frsilies Ig)zf / fax (21,22, 2m | @) d2a .. dzay (92)
2z ZN

by integrating out all the other unwanted variables.

9.2 Variational Inference — General Solution

The goal of the variational inference approach is to find the best possible
approximation of the exact posterior distribution,

q(z) =~ fz1x(z | z) (9:3)

within the constraints imposed by the structure and mathematical form
chosen for the approximate density (and/or mass) function ¢. The model
designer is free to choose any suitable parametric mathematical form for this
function.

In the following the shorthand notation E; [h(Z)] denotes the expected
value of the random (transformed) variable h(Z), calculated using the den-
sity function g, as

E, (M2)] = [ a(2)h(z)dz (9.0

We now derive an optimization criterion from the following expressions for
the log-likelihood of the observed data:

In fx(z) = E; [In fx(z)] =

_ fex(Z | z)fx(@)| _ fex(Z.z)]|
= E, [ln exZ 2 }_Eq lnf_g(zlz)} =
_ |y fzx(Z,z) (¢4

- “[“ «2 |*F “f_|_(zlx)] (8:3)
£(q) KL(g |l fz/x)

Here, the equality on the first line is valid for any ¢, simply because the
log-likelihood, In fx (2), by definition does not depend on Z. The equality
on the second line follows from Bayes’ rule, and the expansion on the third
line simply divides and multiplies by ¢(Z).

The Kullback-Leibler divergence KL (q I f@_&) is defined (see Sec. 9.2.1)
to be a non-negative measure of the “distance” between g and fzx. It is
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zero only if q(2) = fzx(z | &) for all z. Thus, the remaining term £(g) on
the third line of Eq. (9.5) is a lower bound to the log-likelihood In fx ().
By adjusting the function ¢ to find

[In fgi(z,&)] (9.6)

q(Z)

which maximizes the lower bound on the the log-likelihood, we reach an
optimal approximation in the sense that the Kullback-Leibler divergence

4 = argmax L(q) = argmax E,
q g

KL (q | fz| 2(_) is minimal. As we already have an explicit expression for
fzx(z,2) = fx|z(x | 2)fz(z), and we are free to choose a mathematical
form for g, the objective function £(g) can be expressed in a tractable form.
The details of the optimization depend, of course, on the form chosen for q.

For example, if ¢ is a density function defined by a set of hyper-parameters
8, the objective becomes a (non-linear) function (@), and the optimization
can be performed simply by varying those hyper-parameters using a suit-
able optimization algorithm. In this way, VI can be used as a technique
to impose a simple approximate parametric form on complicated posterior
distributions. As discussed in Sec. 9.3, we can sometimes use the expression
£L(g) to find a suitable mathematical form for ¢.

9.2.1 Kullback-Leibler Divergence

The Kullback-Leibler divergence, also called relative entropy, is a logarithmic
measure of the difference between two probability distributions.

Definition 9.1 (KL divergence): Given two probability density (or mass)
functions q and p, both defined for random variables Z in the same space,
the Kullback-Leibler divergence is defined as

_ q(Z )]
KL (g|lp) = B [n 223 (97)
0
If the random variable is continuous-valued, the expectation is
a(Z) [ q(2)
KL =F [ln = z)ln —=dz 9.8

If the distribution is discrete, ¢ and p are probability mass functions, and
the expectation is

KL(q| p) = E, {ln EE;;] = Z q(z)In % (9.9)

The definition is asymmetric in the arguments, so KL (¢||p) # KL (p|| ¢) in
general.
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Theorem 9.1: The Kullback-Leibler divergence is non-negative,
KL(q[p) 20
with equality if and only if g(z) = p(z) for all z. 0
Proof: For any convexr function h(-), Jensen’s inequality guarantees that
E[h(9(2))] = h(E [9(2])) (9.10)
where Y = g(Z) is a transformed scalar variable defined by some function g.

As the function h(-) = —In(+) is convex, Jensen’s inequality can be applied
to the Kullback-Leibler divergence as

KL (¢]|p) = E, [_m%] > I, {%] _
=1n_LQ(z)§8dz=1n/zp(z)dz:O (9.11)

The integral equals 1, simply because p is a normalized probability density
function. If the distributions are discrete, the integral is replaced by a sum,
and the result is the same. n

9.3 Factorized Approximation

As already mentioned in Sec. 9.1, the complete set of hidden variables and
model parameters, Z = (Z,,...,Z ), might include separate groups of
variables. In order to simplify the learning procedure, or for other reasons,
it may be desirable to approximate the posterior density function as a fac-
torized product, as

fzx(z|z) = q(z) = qi(z1) - aur(zar) (9.12)

This means that we model the different groups of variables in (Z,,..., Z )
as statistically independent, although the exact posterior density in Eq. (9.1)
may include some complex dependencies between the groups.

We will now show that the optimal density for each group can be found
iteratively, by choosing

Ingi(z) = Bgo, In fz 2021, oo B, 25, By Zpps)] + € (9.13)

Here, ¢ is just a normalization constant, and £, _, [ | means that the density
functions g; are kept fixed for all j # ¢, and these functions are used to
calculate the expectation over all those other groups of variables Z;, except
Z;. This is repeated for i = 1,..., M to improve each approximate density
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¢; at a time, while keeping all the other functions g;»; fixed. As the differ-
ent density functions are actually coupled, the complete procedure must he
iterated until the result approaches a stable solution.

The criterion function £(g) in Eq. (9.5) cannot decrease in any step of
this procedure. Therefore, the complete procedure is guaranteed to converge
towards a locally optimal solution to the problem formulated in Eq. (9.6).
The stepwise improvement of £(g) is guaranteed by the following theorem:

Theorem 9.2: Given a joint likelihood function fz x(z1,z2,2) for a set
of variables Z = (Z, Z5) and an observation x, we may seek a factorized
approzimation (21, 22) = 01(21)a2(22) ~ fzx(21,22 | ). Then, for any
fized qo, a density function q, obtained as

Ing)(z1) = Ey, [In fz x (21, Z2,2)] +¢, (9.14)
mazximizes
fzx(Z, z)
L(g) = {hl T] (9.15D)

Proof: After taking the expectation over Zs in Eq. (9.14), the remaining
expression is just a function of z;. With proper normalization, this function
can be interpreted as the logarithm of a density function, called §(z;) here.
The objective function £(g) can be expressed as

£@)= [ o) [ ) fzx( ) d dz

Ey,y [111 fz.x(=1 ,Zg@)]:ln p(z1)+const,

_/ / q1(z1)q2(z2) (Ingqi(z1) + Inga(z2)) dzo dzy =
z1 Jzo
:f q1(z1) Inp(zy) dz| + const.
ES

—f qi(z1)Ing (=) dz; / qo(z2) dzo
z1

22
=1

- (1’1(21sz1/ g2(22) In go(z2) dz2 =

JSz1 z2

=i =const.

=f q1(z1) Inp(z1) dz, *_/I qi1(z1)Inqi(z1) dz; + const. =
p(z1)
q1(21)

ln dz) + const. =

= —KL(q || p) + const. (9.16)
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As the Kullback-Leibler divergence on the last line is minimized to zero, if
q1(z1) = p(z1) for all =z, this choice maximizes L£(q) as stated.

This proof also covers the general formulation in Eq. (9.13). We have
simply renamed ¢; and g;»; as g1 and gz in the proof. m

9.4 VI Example with Solution

Example 9.1: Consider a sequence z = (x1,...,z7) of scalar samples z;,
drawn from i.i.d. random variables X; with the GMM density function!

1

2 1 )2
th|e($t | 6) =0.5 6_"5’4/2 + 0-5*8_("”_9) /2
V2w

V2T :

The mean parameter 6 of the second Gaussian component is unknown and
modeled as an outcome of a random variable ©. The prior distribution for
O is assumed to be broad and uniform,

forallt  (9.17)

fo(6) = % §-S5s (9.18)

Calculate the posterior density feyx (6 | z) for the parameter, given the
observed data.
Solution:

The given mixture density is equivalent to assuming that each x; is gen-
erated in a two-step random procedure: First, a binary sample z; is drawn
from the random variable Z;, with P [Z; =0] = P [Z; = 1] = 0.5, and then
x; is generated from the conditional distribution for X, given z. If z, = 0,
the Gaussian component with known zero mean is used, and if z; = 1, the
Gaussian component with unknown mean @ is used. Thus, the conditional
density for X, can be written as

1 _ 1—2z 1 B B Zt
f.\'f,IZ;,,e(It ‘ Ztag) = (ﬁe ’8?/2) (Fé (e 9)2/2) (919)

The prior probability mass function for the hidden sequence Z can be written
as

T iy
f2(2) =[] fz.(=) = [] 0.5'*0.5% (9.20)
t=1

i=1

Applying the improper constant prior fo(f) = 1/c¢, the joint probability
density and mass for the complete data, including observations X, hidden

'This example was proposed by Wasserman (2000, 2012) to point out an interesting
difficulty with exact Bayesian learning in mixture models, also discussed in Problem 9.1.
The solution presented here uses approximate Bayesian learning to avoid this difficulty.
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variables Z, and the parameter ©, is

fﬁ_,&,@(g'l 2, 9) = f@(g) H pr_|Zr,9(:Ct | s 9)fZ1.(Zi) =

t
+ T —%, %

=-1I (—0'5 e‘ﬁ”f”)l ’ (—0‘5 e*“*"””) " (9.21)
€, \V2rm V2m

To find a posterior density of the desired form fg x (€ | z), we use the
factorized approximation

T

—

fozix(0,z | z) = q1(8)g2(2) (9.22)

For this purpose, we must start from the log-likelihood

f 2  — 0)2
Infx zel(z,z0) = Z —(1— zg)x—t - ztw + const. (9.23)
t=1

Here, the constant prior 1/c, and all other constants, are collected in the
“const.” term. The solution in Eq. (9.13) gives two coupled equations:

(z, — 0)?

Ing () = Z —Ey, [Z4] 5 + const. (9.24)
t=1
T 2 _ 02

Inga(z) = Z -(1- z;)% = ztELL(I;—@)] + const. (9.25)
t=1

As the equations are coupled, they must be solved iteratively: When cal-
culating Eq, [Z;] in the first equation, we use the approximate go obtained
in the previous round. To calculate the expectation over © in the second
equation, we use the approximate ¢ from the previous iteration.

As the log-density function Ing;(€) in (9.24) is a second-degree polyno-
mial in @, the density must be Gaussian, i.e., it is specified by two hyperpa-
rameters, the mean g and the variance o2, as

qi(8) = e 207 (9.26)

oV 2w

Using the shorthand notation v = Eq, [Z,] in (9.24), we get

P i — 20 e + Y et

n g (0) = 5

+ const. (9.27)
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Here, the hyperparameters u and o are easily identified as

1 T
= ; o (9.28)
" T
B = Z’Ytiﬁt (9.29)
t=1
w= -—~—%7fft (9.30)
i

These results seem intuitively reasonable: the posterior mean p for © is just
a weighted average of observed values z;, with each observation weighted
by the currently estimated probability that it was actually generated by
the Gaussian mixture component with the unknown mean ©. The inverse
posterior variance of @ is >, v, which is the effective number of observed
values assigned to this mixture component. The more observations, the
lower the variance.
Similarly, in Eq. (9.25) we see that Inga(z) = >, Inga(z), with

2 _ 2 _ 9
qu’t(zt}=7(1,zt}-’%t72t(mt ) +b;ql [(x—©)?]

=(1-2) (I—j) + 2 (M) + const. (9.31)

+ const. =

2

Thus, the posterior probability mass for Z; has the form

2\ 1—2 Bl R B
x (J._ ) g
ga.¢(zt) o (6_%> (e‘ = ) (9.32)

As the probability mass must be normalized so that ¢2¢(0) +g2.(1) = 1, we
can identify the posterior distribution as

g2a(z) = (L —y0)' 75" (9.33)

where

_(e—wPo?
B2 = ———
t — t] = 5
K 42 e N O
2

—
e 2 +e

(9.34)
|

Again, this result is intuitively reasonable: it is quite similar to the corre-
sponding caleulation in Sec. 7.4 for the weight factors in a Gaussian mixture,
using the EM algorithm. The estimated weight factor v, = P[Z, = 1| z]
is the currently estimated probability that the observed z; was generated
by the Gaussian component with the unknown mean ©. The only differ-
ence from the EM solution is caused by the fact that the Bayesian approach
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does not assume a single point estimate © = y, but also accounts for the
remaining variance o2 of the parameter ©.

To reach the final solution we apply Egs. (9.28), (9.30), and (9.34) in
sequence, and repeat this procedure until the result has converged. The
only remaining issue is how to initialize the algorithm. The exact method
for this is not necessarily critical, as the procedure is guaranteed to reach a
local optimum anyway.

In this example, we know that about half of the observed samples are
probably generated from each of the two mixture components. Therefore,
we can initially make a hard assignment for half of the observations to the
component centered at zero, by setting v, = 0 for those x; values that are
closest to zero, and v = 1 for the other samples that are more distant from
zero. When training a GMM with the EM approach, it is also common to
initialize the component weight factors by a similar hard assignment of the
observed samples to different mixture components.

Example 9.1

9.5 EM - Special Case of Variational Inference

This section derives the EM algorithm as a special case of the more general
VI approach. We have an observed training-data sequence & = (x1,...,z7)
which is regarded as an outcome of a corresponding random sequence X.
We need to use a model which includes a set of hidden random wvariables
Z, as well as a parameter vector @, which is regarded as an outcome of a
random vector @. For example, in the case of an HMM, the hidden vari-
ables Z would be the state sequence, and the parameter vector 8 would
include all the HMM parameters. The conditional distribution of the ob-
servations, given any outcome of the hidden variables and the parameters,
is explicitly known as fx ze(z | 2,8). Prior distributions are also known
as fzie(z | 8) for the hidden variables, and a (possibly non-informative,
perhaps improper) density fe(@) for the unknown parameters. Thus, the
complete log-probability function can be written as

Infxze(x z0)=hfxzelx|z0)fzel(z|0)fe(d) (9.35)

Let us now assume that the goal of the training procedure only is to find
a point estimate 0 for the parameters, in analogy with the EM approach,
even though the Bayesian learning actually can produce a more sophisticated
model in the form of a full posterior density for ®. As the estimated param-
eter values will be applied to future observations, the estimate should also
be independent of any particular outcome of the hidden variables Z, which
are valid only for the training data set. Accepting both these restrictions,
we apply a factorized approximation to the posterior distribution,

fozix(0,z | z) ~q(0,2) = q1(0 | 0)g2(z) (9.36)
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where we also force the posterior density ¢; to be very sharply peaked,
such that nearly all the probability is concentrated at the single point 6.
Formally, this might be expressed as

q(00) =] X (M) (9.37)

L Ck Ck

using a Dirac delta function for each element ) of the parameter vector,
with some arbitrary scale hyper-parameters ¢, having the same physical
dimension as the corresponding ;. The main consequence of enforcing a
very sharply peaked density is that the expected value of any transformation
¢(0) of the random variable is, asymptotically, just the value at the single
point,

Ey [9(®)) = [ 0:(6 | 8)9(8)d6 - 9() (938)

In each step of the VI iterative learning procedure, we first apply the general
factorized solution in (9.13) to re-estimate the distribution of the hidden
variables, using the fixed point estimate éogd for ® that was obtained in the
previous step:

Ingy(z) = Ey, [In fx z,0(2, 2,0)] + const. =
=In fx.z.6(x, 2,004) + const. (9.39)

After proper normalization, we have

02(2) x fx,z.0(® 2, 004) x fz1x.0(2 | Z,004) (9.40)

To find a new point estimate for ®, we use the general VI solution in Eq.
(9.6), and define an objective function where we are free to choose any new
location point 8’ for ¢;(6 | 8'):

B fxze(®, Z,0)|
‘C’(Q) - EG‘ 11] ql(e | gf)qz(_z_) -
=Ey, [Eq Infx,z0(2,2,0) - Inq:(© | 8')] ~Ing2(Z2)] =  (9.41)

= Ep, [Infx zo(x,Z,6')] ~Ey Inq1(© | 6)] —Eq, [Ingo(Z)]

~

Q(gr»golri) h,(@) h(g)

Here, the entropy h(®) = —FE,, [Ing,(© | 8')] is constant, regardless of
the location parameter &', because changing 8’ only translates the position
of the peak of ¢; while its shape remains constant. The entropy h(Z) =
—E,, [Ing2(Z)] does not involve @ at all. Thus, to maximize £(q) as a
function of @', we only need to maximize the first term Q(B’,ao,gd). This
objective is a function of the new point estimate @', which we are free to
choose, and it is also a function of the previous fixed value é(,;d, because this
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value was used to obtain ¢z, which was then used to calculate the expectation
Eg, [-]. Thus, the optimal choice for the new point estimate is

0., = argmax Q (9’, 9014) =argmax Eg, [In fx zo(z, Z,0")]  (9.42)
o o'

Now recall that the EM update step was derived in Chapter 7 as

B, = argmax Q(8,8,14) = argmax Ez [n P (Z, | 0] | 2,8,a] (9.43)
o o’ -

where Q(6, QGM) is the “EM help function”, and the notation Ez [ i, éo;d]

was used to emphasize that we must use P [Z | &, éo[d] to calculate the ex-
pected value.
In the VI update equation (9.42), we have

0(2) = fzix.0(z | z,004) (9.44)

and
Infx ze(x, Z,0')=Infx ze(z Z|8)fe(d) (9.45)

Thus, the maximization step in (9.42) is exactly the same as the correspond-
ing EM update step, if the prior parameter density is non-informative, i.e.,
if the density fo(@') is constant.? Thus, the objective function Q(6',84q),
here derived from the VI approach, can be exactly identical to the EM help
function defined in the EM procedure. It is interesting to see that both
approaches can lead to exactly the same computational algorithm.

The difference here is, of course, that the Bayesian VI approach starts
from a model where the parameters in @ are considered as random variables,
whereas the EM approach only assumes that the parameters have some fixed
unknown values. The VI approach is also much more general, as it can also
handle several groups of parameters, and the “EM-like” point approximation
may be used for all parameters, or only for a subset. Thus, the EM procedure
can be seen as a special case of the VI approach.

?Actually, a non-constant prior function fe(#') could also have been applied in the
EM procedure, as

(;?,-:{ﬁp = argmax (Eg [ln P [_Z_,_:g] 9’] | z, é.,m} +In fe(ﬂ’})
=

resulting in MAP rather than Maximun-Likelihood estimates.
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Summary

This chapter introduced Variational Inference (V1) for approximate Bayesian
learning. The VI approach is a general method for finding iterative algo-
rithms to estimate an approximate posterior distribution for unknown pa-
rameters and hidden model variables Z = (Zy,...,Z)), given a set of
training observations & = (x4, ..., z7).

e The result of VI is a density function gz, which is a good approxima-
tion to the exact posterior density function fzx,

qz(2) = fz1x(z | z)

e The mathematical form of gz can be chosen by the experimenter.
Parametric and factorized forms

M
Qg(g) — H Qm(zm;g"m)
m=1

are common.

e The approximation is guaranteed to be optimal in the sense that the
Kullback-Leibler divergence KL (qz | fz1x ) is minimized, within the
constraints imposed by the chosen mathematical form for the approx-
imation.

e The VI approach can lead to computationally efficient methods even
when the probabilistic model is highly complex.

e The Expectation Maximization (EM) algorithm can be seen as a special
case of the much more general VI approach.

e Other approximate methods for Bayesian learning exist, including
sampling methods and Ezpectation Propagation (EP).






