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Abstract
Pronunciation variations in speech are one of the main difficulties in speech
and speaker recognition tasks.  Examples of these are accents and speech in a
speaker’s non-native language, which is treated in this report. Foreign accents
tend to reduce the effectiveness of speech recognition systems.  Speech
classification has a number of application areas;  for example identifying a
foreign accent before speech recognition is applied allows a system to be more
flexible by giving it the opportunity to make use of accent specific models. In
this investigation,  we attempt to classify non-native accented English speech
using Gaussian mixture models trained only on speech corpora of native
speech in other languages.

 

1 INTRODUCTION

If everybody spoke the same way every time they uttered something,  speech
recognition would be much more effective. Variations are of great importance
for the characteristics of speech;  a word never sounds the same twice.
According to Sumner [1],  accented speech makes the speech recognition task
even harder.

Speaker variability and pronunciation variations have been a topic for
researchers for some time and Benzeghiba et al.   [2]  write that the small
variations are due to factors such as speaker,  gender,  age,  regional accent,
speaking style and speaking rate among others. Accented speech is associated
with a shift within the feature space [2].

This report covers a project in the course DT2118  Speech and Speaker
Recognition, carried out at KTH. The aim of the project was to investigate the
possibilities of accent and non-native speaker recognition using training data
consisting only of native speech of different languages. Tools used include the
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Hidden Markov Model Toolkit (HTK) [3]  and a CUDA implementation of
Expectation Maximization for training Gaussian mixture models (GMMs) [4].
A smaller-size literature study on the topic was done,  dealing with the
possibilities of accent identification and the problems with pronunciation
variations.  These are presented in section 2.  A description of the experiments
and the speech corpora that were used is given in section 3,  followed by a
results, discussion and conclusions in sections 4, 5 and 6, respectively.

2 BACKGROUND

Chen et al. [5] claim that the main difficulties in speech recognition are due to
speaker variability,  where accent and gender are the two most important
factors. They propose a successful method that makes use of GMMs to identify
four different Mandarin accents,  with better performance for female speakers
than for male speakers. When using GMMs there is no need for transcriptions
of the speech corpus,  which differs from the use of hidden Markov models
(HMMs).  Chen et al.  mention that accent identification is important because
accent-independent systems generally perform 30  %  worse than accent-
dependent systems.  The number of Gaussian components greatly affects the
performance of a GMM; Chen et al.  use 32 components in their experiments,
but report that 64  components gave a better performance at the cost of being
more time-consuming system.  An accent identifier can be used as a model
selector for the adaptation to a single model in a set of multiple models with
smaller accent variations.

Techniques regarding pronunciation variations can also be used to help people
learn a new language,  according to Alsulaiman et al.  [6].  They write about
pronunciation issues for learners of Arabic as a second language, claiming that
the difficulty of learning depends on the similarities between the learners’ first
language and the Arabic language.  They use a method with GMMs for
identifying the origin of three groups of speakers of Arabic as second language.
If the speakers’ accents are known, different acoustic and lexical models can be
used,  allowing the automatic speech recognition (ASR)  system to perform
better [7].  Hanani et al. [7]  compare the human ability to recognize accents
within the British English language with their language identification system
using primarily GMMs. The recognition error rate was about four times greater
for humans.
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A model that is trained only on native speech,  including accented native
speech,  cannot handle non-native accented speech properly [2].  Non-native
speakers will often replace sounds that are not present in their native language
with the native language’s closest one. These sorts of errors cannot be handled
by the usual triphone-based modeling,  according to Benzeghiba et al [2].  If
pronunciation variations are not taken into account,  the performance of the
ASR system will suffer.  This is best done using several Gaussian mixtures
instead of HMMs [8].  A native acoustic model can be adjusted using a non-
native speech corpus, which in turn will make the ASR system’s performance
better [9].

Nguyen et al. [10]  present a method for classifying Australian speakers into
groups based on accent,  gender and age using Mel-frequency cepstral
coefficient (MFCC) features to train Gaussian speaker models. They conclude
that it was easier to recognize a certain cultivated Australian accent for females
than for males.
 

3 EXPERIMENT SETUP

3.1 Speech Corpora
As the goal of the project was to investigate the possibility of classifying
foreign accents,  the speech corpus used was a combination of corpora of
different languages:

1. Native French speakers
2. Natve German speakers
3. Native Polish speakers
4. Native Spanish speakers
5. Native Swedish speakers
6. Native Turkish speakers
7. French speakers of English
8. German speakers of English
9. Polish speakers of English
10. Spanish speakers of English
11. Turkish speakers of English

Except for Swedish, these were all downloaded from the Backbone project and
converted to WAV files using FFmpeg [11].  The Swedish corpus was
downloaded from SweDia [12].  There was little time to assess the quality of
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the recordings, but they were assumed to be good enough for the investigation
in question.  No distinction was made between male and female speakers,  or
speakers of different ages.

The native speech corpora were used only for training the GMMs, and the non-
native speech corpora were used only for testing.  A corpus of Swedish
speakers of English was not found within the time frame of the project, but the
native Swedish model was kept as an additional competing model in the
classifier.

3.1 Feature Extraction
The first step in classifying speech is to convert the raw waveform data into
vectors of features capable of reflecting the variances that occur in
pronunciation.  MFCCs attempt to do this on a scale that is indicative of the
logarithmic perception of pitch in human hearing, and as such have long been a
standard in the field of speech recognition.  We begin by extracting 39-
dimensional MFCC feature vectors from input speech using predefined
methods in HTK.  These vectors are composed of 13  Mel-frequency cepstral
coefficients, 13  delta coefficients and 13  acceleration coefficients.  The delta
and acceleration coefficients are the finite first and second order derivatives,
respectively, of the cepstral coefficients and aim to model the temporal nature
of speech. Feature vectors are obtained from 25 ms long Hamming windows of
speech taken every 10 ms.

3.3 Visualization of Features
Before training models and computing likelihoods, the 39-dimensional MFCC
feature vectors of a selection of languages in the corpus were projected onto
two dimensions for visualization,  in the hope that some differences in the
MFCC distributions might be discernible by manual inspection.  This
visualization was achieved using a self-organizing feature map (SOM)
implementation of an artificial neural network (ANN).  This is a vector
quantization technique in the form of an unsupervised learning algorithm that
attempts to find a topology preserving map from the feature space to a 2-
dimensional space [13].  Details on the training parameters are given below.
The training data consisted of 10,000 randomly selected MFCC feature points
from each of the English,  French,  German,  French English and German
English corpora1,  for a total of 50,000  data points.  The resulting trained
network was then used to map the 50,000  training points and an additional

1 Because of logistic problems, the MFCC values of the other corpora were not 
available at the time, which is why only these corpora were included for visualization.
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20,000 randomly selected data points from each of the languages, for a total of
150,000 data points, to the nodes in the 2D grid. The density of MFCC feature
vectors of the corpus could thus be visualized as seen in Fig. 1. Note that these
results were not used in the later classification, this is only a way to visualize
the MFCC feature vectors.

Fig. 1.  Heatmaps of projections of MFCC vectors from a selection of the languages of the
corpus onto a 10-by-10  grid using a SOM ANN.  From top left:  English,  German,  French,
English with German accent, English with French accent. High values indicate a high density
of feature vectors.  Relative values and coordinates are meaningful,  absolute values and
coordinates are meaningless.

The images indicate that there might be some systematic differences in which
MFCC vectors appear in the different languages.

3.3.1 SOM Training Parameters
The network had 100 nodes arranged in a 10-by-10 grid whose edges did not
wrap around.  The network was trained for up to 100 epochs,  until more than
95% of the features were mapped to the same node as in the last epoch.  The
learning rate was initially set to 0.2 and exponentially decreased towards 0.001
in epoch 100.  The multiple-winners neighbourhood was all nodes at a
Manhattan distance of n or less from the winner, where n was initially set to 4
and linearly decreased towards 0 in epoch 100.

5



3.4 Model Training
Speech models are trained for a given language using Bodzár et al.’s [4]
CUDA implementation of the Expectation-Maximization (EM)  algorithm for
GMMs.  CUDA is a parallel computing platform developed by NVIDIA that
allows for a dramatic reduction in computing time for parallelizable operations
by taking advantage of concurrency of computation on a GPU. A well-known
problem with the EM algorithm for mixture models occurs when one
component converges to a single point, resulting in zero variance and infinite
likelihood.  This ultimately causes the algorithm to fail if not handled
appropriately. Bodzár et al.’s implementation of the EM algorithm handles this
issue by deleting components when their variance becomes zero.  As a result,
the algorithm itself has a tendency to determine the number of components a
model trained on a particular dataset contains. Initially, models were trained on
native speech data from each language corpus with a large number of
components,  allowing the algorithm’s elimination of faulty components to
determine a good value.  All language models were then trained with the
minimum number of components that resulted from initial training.  This
resulted in 8  Gaussian components being used when training the models for
Swedish, German, French, Spanish, Polish and Turkish. The algorithm was run
for 20  iterations on 1-2.5  million MFCC vectors randomly selected from the
corpus for each language.

3.4.1 Visualization
The same SOM as used in section 3.3 was used to visualize 30 000 random points 
drawn from each of the GMM distributions for German and French, for comparison 
with the visualizations of the corpora. The result is shown in figure 2.
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Fig. 2.  Heatmaps of 30,000 random points drawn from each of the German (left) and French
(right) GMMs, mapped to a 2D grid using the same SOM as in figure 1. Refer to figure 1 for
interpretation. Unlike the plots in figure 1, these two plots use different scaling factors for the
pixel values. In each of these plots, the pixel values have been scaled so that the highest value
is 256, while in figure 1 the pixels of all plots were scaled by the same factor. This change in
scaling was done because the pixel values for the German GMM would otherwise dominate the
plots, making the French GMM plot render as entirely black.

3.5 Accent Classification
Given the GMM models trained using only native speech, MFCC data from the
non-native speech corpora was classified as follows.  For each recording of
non-native speech, the log-likelihood of each MFCC point extracted given each
model was computed. These points were then binned based on the model that
gave the highest log-likelihood.

 

4 RESULTS

In Fig. 3, each group on the x-axis represents a model. The colors and positions
within the groups of the bars represent different recordings of non-native
speech. Each bar in each group represents how many MFCC points in that file
received the highest likelihood of being produced by that language’s native
speech model.

Fig. 3. Histogram for MFCC point classification of French English.
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Fig. 4 shows pointwise likelihood classifications for 5 native Spanish speakers 
speaking English.

Fig. 4. Histogram for MFCC point classification of Spanish English.

Fig. 5  shows pointwise likelihood classifications for 5  native Polish speakers
speaking English.
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Fig. 5. Histogram for MFCC point classification of Polish English.

Fig. 6 shows pointwise likelihood classifications for 5 native Turkish speakers
speaking English.

Fig. 6. Histogram for MFCC point classification of Turkish English.

Fig. 7 shows pointwise likelihood classifications for 5 native German speakers
speaking English.
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Fig. 7. Histogram for MFCC point classification of German English.

 

5 DISCUSSION

One should keep in mind that one of the assumptions in this project is that it is
known in advance which language the foreign speakers are speaking,  in this
case English.  This may not always be the case in applications,  and the
proposed method may perform worse if such a thing cannot be assumed.
However, considering the way non-native speakers tend to replace sounds with
ones from their native language, it might also achieve comparable performance
even for accents of other languages.

Based on the results obtained, the potential of an accent identification system
trained on native speech appears to be very promising. Excluding the German
speakers,  only 1  out of the 20  remaining non-native English speakers tested
was misclassified using a pointwise classification method.  One of the native
French speakers was classified as a native Turkish speaker.  This error could
likely have been avoided if some degree of a confidence measure was applied
to classification results,  since,  in this instance,  the point total difference
between the two closely-competing models was a meagre 1%  of the total
points in the recording.

The results of classifying English with German accent is peculiar. No language
scores particularly well against the native German model,  and German
accented English is scored most highly with French.  One,  if not both,  of the
German corpora used - or at least the MFCC data that was extracted from them
- appears to be defective in some way. This is also reflected in figures 1 and 2.
The French corpus and GMM look similar under this map,  but the German
ones do not.  The German GMM appears to have degenerated into a single
mode with very small variance.  As noted in section 3,  the quality of the
corpora was not assessed prior to the experiment.

Performance could perhaps be enhanced further by taking factors such as age
and gender into account,  since these are two of the most important factors in
speaker variability [5].  They were not taken into account in this project since
the goal was to determine whether the proposed method was feasible or not.

6 CONCLUSIONS
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Non-native speech identification using GMMs trained only on native speech
was fairly reliable for large speech samples of French,  Spanish,  Polish and
Turkish.  German speech of English,  however,  was more frequently classified
as French than German.  This may have been caused by one or both of the
corpora being defective in some way.  The proposed approach to identifying
foreign accents does indeed seem feasible,  but using a confidence-based
classification strategy would probably be preferable to a hard strategy such as
the raw argmax used here.
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