
Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

Speak2Me

A Chrome Speech Interface

Annica Ivert Christos Kakouros
aivert@kth.se kakouros@kth.se

Speech and Speaker Recognition
2013

ABSTRACT: With the advances in speech recognition technology, integration of speech
recognition support is becoming more prominent in personal computer environments. With
Internet applications occupying the largest timeshare of the average user’s daily use of personal
computers [1] web browsers are one of the main target applications for speech-based control. In
this report we examine the use of speech in controlling Chrome web browser. We refer to existing
solutions and examine two major architectures, i.e. a Chrome extension and a personal computer
application. We then use Python Dragonfly and Windows Speech to implement Speak2Me, a
speech interface for different Chrome operations.

Introduction

Automatic speech recognition (ASR) has followed a slower rate of growth compared to
other areas of pattern recognition, largely connected to the growth of computing power over the
last two decades [2]. Today, automatic speech recognition is used in a broad range of
applications, from call centers to military applications [3] and personal computer environments.
In the latter proprietary speech recognition engines have been introduced to perform tasks that
users have been performing through other means of interaction with their computers, i.e. mostly
tactical moves. Speech is used either as a complementary mean of interaction or in cases of
physical impairment as the only mean of interaction between the user and their computer [4].
Internet applications occupy more than half of the timeshare of the average user’s daily use of
personal computers [1] and web browsers can be one of the main target applications to be
controlled using speech.

In this report we present Speak2Me, a speech interface for Chrome. We begin with
investigating the architecture of two ways of implementation, i.e. a distributed architecture
implemented as a Chrome extension and a local architecture developed as a personal computer
application. We continue with describing the methodology and features of our system that is
based on the second architecture. We summarize our conclusions and experiences from the
system development and usage.

1

mailto:aivert@kth.se
mailto:kakouros@kth.se

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

Basic Architectures

Chrome Extension

One of the ways to deploy the speech interface is to implement it as a Chrome
extension. Extensions are small programs that are integrated in Chrome window to add new
features to the browser and personalize the user’s browsing experience [5]. Google provides
APIs i.e. the tools needed to interact and control different components of the browser, like
opening a new tab or manipulating bookmarks. Along with the contribution of third party
communities they offer extended documentation for the APIs and the development of new
extensions. The main technologies used are JavaScript and HTML.

There are two approaches in developing a speech extension that are summarized in
figures 1 and 2 accordingly. Both approaches include a call from the extension to a server on
which a Speech Recognition engine runs. The extension first records the user’s voice and then
sends it to the server where it is transcribed to text. Afterwards the server sends the text back to
the extension. With this implementation recognition is performed entirely remotely.

In figure 1, the extension runs flash player to record the user’s voice and then uses
RTMP (Real Time Messaging Protocol) to contact the media server (Red5 or Adobe Flash
Media Server) and send the recording. The media server passes the recording to the Speech
recognition application. The latter includes the Speech engine and the interface to it that feeds
it the waveforms, specifies the grammar that the extension uses to perform its operations on the
browser and receives the textual outputs from the engine. The textual output is returned to the
extension using any web server.

Figure 1: Extension using media server and remote speech recognition

2

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

Figure 2 demonstrates another newly adopted approach. The extension uses Web
Speech API that is a specification published by the Speech API Community Group and not yet
a W3C Standard [6]. It is a JavaScript API that aims to enable web developers to produce
speech scripts for web browsers. The API itself is agnostic of the underlying speech recognition
and synthesis implementation and can support both server-based and client-based/embedded
recognition (for one-shot and continuous speech) and synthesis. Grammars can be specified and
used in the web page context and speech recognition results are provided to the web page as a
list of hypotheses, along with other relevant information for each hypothesis. Currently, the API
is in experimental status and only the recognition part is supported in Chrome 25. In figure 2 we
have used Google speech engine.

Figure 2: Extension using JavaScript Web Speech API and remote speech recognition

Personal Computer Application

Another approach to building a Chrome speech interface is to develop it as a personal
computer application that can run in parallel with the browser and control its functions using
speech input from the user. Everything is performed locally on the user’s computer. The basic
architecture is given in figure 3. The application comes with a predefined grammar that specifies
the set of operations/rules that it supports and is used when communicating with the Speech
Recognition engine. It receives the recognized rules as textual output from the engine and
translates them into an action that it then performs on the browser. Speech input from the
user’s microphone and the grammar are fed to the speech engine through the application.

3

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

Figure 3: Personal computer application architecture

Speech Engines & Frameworks

There are various Large-Vocabulary-Continuous-Speech-Recognition (LVCSR) engines
available in the market [7] and different frameworks to develop the interfacing application.
Below we summarize some of them in tables 1 and 2 respectively.

CMU Sphinx Julius
Dragon

Naturally
Speaking

Microsoft
Speech

Developer
Carnegie Mellon

University

Nagoya
Institute of
Technology

Nuance Microsoft

Licence Open-source Open-source Proprietary
Comes shipped
with Microsoft
Vista or earlier

Supported
language
models

English
Chinese
French
Spanish
German
Russian

Japanese
English

English
French
German
Italian

Spanish
Dutch

U.S. English
U.K. English

Chinese
Japanese
Spanish
French

German

Table 1: Overview of speech engines

4

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

Julius is mainly directed to Japanese, though it has a built in language model for English
while CMU Sphinx greatly encourages developers to develop their own language models [7].
Both Dragon Naturally Speaking (depending on the version) and Microsoft Speech support
speaker-independent recognition [8][9]. They have training modules and support dictation
mode, to insert text to fields or office suites, and command mode, to control the computer
environment and running applications. Microsoft Speech offers more command features for
Microsoft applications, requires clear speaking and continues training as long as the user
interacts with the engine.

Vocola
Microsoft Speech

API
Dragonfly

Language Own C# Python

Supported
Speech
Engine

Dragon Naturally
Speaking

&
Microsoft Speech

Dragon Naturally
Speaking

Dragon Naturally
Speaking

&
Microsoft Speech

Table 2: Overview of frameworks

Concerning the frameworks we should note that, Vocola and Dragonfly offer a higher
level of abstraction and are friendlier to the developer while Microsoft Speech API is an API
written in C# and demands greater programming skills. Finally, one of the major drawbacks of
Vocola is that it does not support conditional statements or calling scripts from within Vocola
code [10].

Chrome Speech Interface

Our choice was to implement our speech interface using DragonFly and Windows
Speech Recognition engine. The choice of architecture was mostly motivated firstly by the fact
that Web Speech is still in a highly experimental level and secondly by the locality offered
through a personal computer application, i.e. the application and the engine run locally and are
always available to the user. The choice of Dragonfly was made based on the friendliness and
ease on writing macros, the completeness of the language and the fact that it supports Windows
Speech. The choice on the latter was mostly based on the fact that it is shipped along with
Windows 7 OS. Dragon Natural Speech would have us missing some hundred dollars and the
use of any of the open-source speech engines would need greater efforts with not always
guaranteed results. Below we present Dragonfly and then go on with the description of our
implementation.

5

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

DragonFly

Dragonfly provides a framework in which it is possible to create Python macros used to
interface the speech engine of choice [2]. To build a macro, a Grammar must first defined. A
Dragonfly Grammar consists of a set of Rules which define what can be said and how this will
be mapped to executable actions.

Figure 4: Example components of a DragonFly Grammar.

Examples of DragonFly Rules are the MappingRule and the CompoundRule. A
MappingRule defines the simplest rule, which is basically a direct mapping from a speech input
to a set of actions to be executed without any intermediate processing. With a CompoundRule it
is possible to group the speech input in different classes and do further processing of the data
before deciding upon which actions to execute.

The translation from speech input to text is done via a speech engine. Currently
DragonFly supports Dragon Naturally Speaking and Windows Speech Recognition. When the
speech has been converted into its textual interpretation, it is matched against a grammar
defined in the DragonFLy Rules. This grammar is not to be confused with the overall Grammar
class, that defined all the rules for a given application.

The grammar that defines a valid speech input consists of a number of Elements. Some
examples of Elements are:

1. Sequence - A sequence of Elements.
2. Dictation - A free form Element that matches all inputs and allows the user to pass arguments to the

functions. An example would be a “Save as <name>” command that lets the user specify the
parameter name.

3. Alternative - Specifies that exactly one of a set of specified Elements will give a match.
4. IntegerRef - Matches integers within a specified interval.

6

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

When an input is matching a specified grammar rule this is mapped to an Action.
Common Dragonfly Actions include:

1. Key - Is equivalent to pressing a sequence of keys on the keyboard.
2. Text - Inserts the specified text.
3. Mouse - Moves the mouse to the specified location.
4. Function - Calls a Python function that may do some preprocessing of the data before executing an

Action/a set of Actions.

Implementation

For a speech interface to be user-friendly it needs to be complementary to traditional
means of interaction between the user and the computer while offering all the basic
functionalities with simple intuitive commands. Simple commands such as “Open tab” are
quite straightforward. Other operations such as opening web pages and filling out forms need to
be given a bit more though when it comes to satisfying the users needs.

Since Windows Speech Recognition does not by any means have a word error rate of
zero and cannot, if not properly trained, recognize difficult web addresses it would be
convenient to have a mapping from some simpler set of speech input to the actual web
addresses. Also, it is easier to say “Read mail” than to have to spell out the actual adress, say
“webmail.kth.se”.

We therefore created a Python script that parses a text-file that can be filled in by any
user without having to deal with actually rendering the Python code. An example subset of such
a file may look like:

mail: webmail.kth.se
news: www.dn.se

In the same way information about the user that might be commonly used to fill out
forms etc. can be stored in the settings file. A speech input address such as “Brinellvägen 68”
would have no way of being recognized properly unless included in the dictionary somehow. ‘

In addition to this basic functionality, we implemented a speech calculator that let the
user give speech input on the form <multiply|divide> <number_1> by <number_2> and get the
result as a textual output.

We also added a simple speech reminder, where the user can add tasks to the memory
bank by saying “Remember <task>” and later retrieve these by saying “Recall”.

Discussion

Our speech interface, Speak2Me, allows the user to interact with Chrome via speech
commands. We solved the problem with extensive web addresses possibly containing
non-English words by providing a settings file for the user to fill in “speech bookmarks”. A
more convenient way to do this would be to also add these bookmarks by voice commands on
the form “Bookmark this as <name>”. This is a further improvement to be made. However this
will require the python program to retrieve information from Google Chrome about the current
web-page. Currently our implementation only speaks to Windows Speech Recognition and the
computer input devices such as the keyboard and the mouse.

7

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

Conclusions

The performance of our speech interface relies entirely on the performance of Windows
Speech Recognition. The recognizer can be trained further to improve performance, but our
interactions with Google Chrome were mostly satisfactory when the conditions, such as a
decent microphone and a noise-free environment were met. We did also see the difference
between different users and how this difference became smaller as the recognizer was trained
with both voices. We also noted some user-independent difference in performance when using
the system on a laptop connected to power supply and on the same laptop computer running on
battery, with higher performance on the former. Possible explanation for this may be the usage
of resources for power management in laptops. However, this is only our observations after
having used the engine for a short period of time. More systematic approach will be needed to
clarify these results.

DragonFly provides an easy way to extend the Windows Speech Recognition
functionality to applications like Google Chrome. Even though speech recognition still has not
reached the point where this works flawlessly, most commands were properly interpreted when
the engine had been given some training and the testing was conducted in a noise-free
environment.

The added features, like the calculator and the reminder function, hints to one of the
advantages of a speech interface, besides providing a more natural interaction with the
computer: With speech commands menus and buttons are unnecessary, providing a cleaner, less
cluttered screen.

References

[1] Beauvisage, T., 2009. Computer Usage in Daily Life. In Conference on Human Factors in
Computing Systems, Proceedings of the SIGCHI, pp.575-584.

[2] O’Shaughnessy, D., 2008. Invited paper: Automatic speech recognition: History, methods
and challenges. In Pattern Recognition, Volume 41, Issue 10, October 2008, Pages
2965-2979.

[3] Wikipedia, Speech Recognition. Online. 20 May. 2013
 http://en.wikipedia.org/wiki/Speech_recognition

[4] Kakouros, C., Ramos, M., Edelstam, F., 2013. Speech Technology and Smart Homes. In
Speech Technology DT2112, Term Paper, KTH.

[5] Google, Chrome Extensions. Online. 18 May. 2013
 http://developer.chrome.com/extensions/index.html

[6] W3C, Web Speech API Specification. Online. 19 May. 2013
 https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

[7] Wikipedia, List of speech recognition software. Online. 25 May. 2013
 http://en.wikipedia.org/wiki/List_of_speech_recognition_software

[8] Wikipedia, Microsoft Speech API. Online. 24 May. 2013
 http://en.wikipedia.org/wiki/Microsoft_Speech_API

[9] Wikipedia, Dragon Naturally Speaking. Online. 24 May. 2013

8

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSpeech_recognition&sa=D&sntz=1&usg=AFQjCNGC-Tcy4O6F9FcsOokyTH58YHt_fQ
http://developer.chrome.com/extensions/index.html
https://www.google.com/url?q=https%3A%2F%2Fdvcs.w3.org%2Fhg%2Fspeech-api%2Fraw-file%2Ftip%2Fspeechapi.html&sa=D&sntz=1&usg=AFQjCNH17hjHmbnH7cD3-RD7EohNLRpgMw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FList_of_speech_recognition_software&sa=D&sntz=1&usg=AFQjCNFpHvp5E3IYRbOsOZBp4oN4eJ57Kw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMicrosoft_Speech_API&sa=D&sntz=1&usg=AFQjCNEo0AWu-2YNMWHQSVAqW2Hn72W8wg

Speak2Me ­ A Chrome Speech Interface Speech & Speaker Recognition DT2118
A. Ivert, C. Kakouros May 2013

 http://en.wikipedia.org/wiki/Dragon_NaturallySpeaking

[10] Dragonfly, Project information. Online. 25 May. 2013
 http://code.google.com/p/dragonfly/

[11] Dragonfly, Documentation. Online. 25 May. 2013
http://dragonfly.googlecode.com/svn-history/r105/trunk/dragonfly/documentation/index.ht

ml

9

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDragon_NaturallySpeaking&sa=D&sntz=1&usg=AFQjCNETZI4snf8TKfFwOMgSvm2djsOsjw
http://code.google.com/p/dragonfly/
http://dragonfly.googlecode.com/svn-history/r105/trunk/dragonfly/documentation/index.html
http://dragonfly.googlecode.com/svn-history/r105/trunk/dragonfly/documentation/index.html

