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Abstract

The purpose of this project is to make a thorough exploration of a new computational paradigm
referred to as Deep Learning applied to Speech Recognition systems. Results in late publications have
shown that Automatic Speech Recognisers based on Hidden Markov Model with deep architectures have
outperformed any other traditional recognisers based on Hidden Markov Model and Gaussian Mixtures
on the TIMIT database. For this reason we believe that it’s worth exploring the application of deep
learning techniques in the field of speech recognition and present its use in the state of the art speech
recognisers.
As an introduction, this project will explore the traditional speech recognisers based on Hidden Markov

Models and Gaussian Mixtures putting in evidence some of its weaknesses. In the latter sections a general
introduction to deep learning algorithms and architectures will be carried on with emphasis on those
used in the speech recognition field continuing to the main sections of this project where we’ll explore
thoroughly how these architectures are implemented and combined with Hidden Markov Models in the
speech recognition field.
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1 Introduction
Over the last five decades immense efforts has gone
into studying technological approaches for speech
recognition systems and still a general and robust
solution for the problem has not been found yet. As
early as 1950s, researchers built simple recognizers
with credible performance for restricted tasks (such
as isolated digits spoken by single speaker) but un-
fortunately the techniques used in these systems
were not sufficient to solve the general problem.
The difficulties of this problem can be described in
terms of a number of characterizations of the task,
including:

1. Intra- and inter-speaker variabilities: Is the
system speaker dependent(i.e., optimized for a
single talker), or speaker independent(can rec-
ognize anyone’s voice)?

2. Is the system able to recognize isolated or con-
tinuous speech? With isolated word recogni-
tion system, the talker is required to say words
with short pauses in between. This is the
simplest case, since word boundaries are de-
tected fairly easily and words are not strongly
coarticulated. The other case is Continuous
Speech Recognition where boundaries between
words are more difficult to detect and words
are strongly coarticulated.

3. Vocabulary size and confusability: Is the sys-
tem able to recognize a vocabulary of only a
few words, or can it handle large vocabularies
of thousands of words? What is the potential
confusability between words? In general, it is
difficult to get good recognition results with
a large vocabulary, and the computation time
can also be an issue in this case.

4. Does the system work in adverse conditions?
Several variables that can alter the perfor-
mance of ASR systems have been identified:

• environmental noise(e.g., in car, cockpit
or factory floor).

• distorted acoustic and speech correlated
noise (room acoustics, nonlinear distor-
tions).

• different microphones and distance from
microphone.

• altered speaking manner (e.g., differing
speaking rate, speaker stress, breath,
pitch...)

• some combination of the above (most
cases).

Most of these difficulties can be summarized
fairly simple: variability of the speech acoustic and
variation of additive noise. However, we instinc-
tively expect a high level of recognition perfor-
mance, much as would be achieved by a human,
and have very little interest in a recognizer that
makes frequent mistakes. For these reasons, speech
recognition must achieve a very high level of perfor-
mance to be of general interest as a man-machine
interface.

Although modern systems do not achieve yet
recognition performance achieved by human, late
published systems do fairy well. Results In [1, 2] on
the TIMIT [3] database have shown a potential way
to improve recognition systems by using deep archi-
tectures [4] interfaced with Hidden Markov Models
to approximate the temporal variability and in this
paper we’ll explore the new paradigm applied in
recognition systems.

2 Statistical Approach to
ASR

One of the most common approaches to solve the
problem of Automated Speech Recognition is using
statistical framework for inference given a certain
utterance. The idea is that given a set of mea-
surements, x, what’s the probability of it belonging
to a class ωk also known as a posteriori probability
p(ωk|x) . By using the Bayes Rule it’s possible to
calculate it as follows :

p(ωk|x) = p(x|ωk)p(ωk)
p(x) (1)

Where x is the measurement (acoustic feature)
taken from the utterance signal and ωk is the set of
classes (words or phonemes).

The measurement x typically is a Mel Frequency
Cepstral Coefficients (MFCC) vector that aims to
capture the discriminative information of the ut-
terance signal and discard the less important infor-
mation to ease in the computations. Other type
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Figure 1: Continuous Density Hidden Markov
Model

of feature extraction exist such as Linear Predic-
tive Coding (LPC), Perceptual Linear Prediction
(PLP), first order derivative, second order deriva-
tive etc...
As equation (1) shows, the a posteriori proba-

bility is split in the conditional probability p(x|ωk)
where it represents the probability of the utterance
given the Acoustic Model and the prior probabil-
ity p(ωk) where it’s the probability of the class
(phoneme or a word) aa priori from our knowledge
of the language (known as the Language Model).
In this paper the focus will be on the application
of Deep Learning techniques to the acoustic model
and for the rest of the document we’ll be deal-
ing with different forms of building acoustic mod-
els that better approximates the nature of human
speech utterances.

3 HMM/GMM Aproach
Given the temporal variability in speech and its
sequential nature, the most efficient approach de-
veloped so far to model it is by a Hidden Markov
Model [5]. For every unit of speech (either a word
or a phoneme) a hidden markov model is built. The
continuous nature of speech gives rise to model it
efficiently by a Continuous Density Hidden Markov
Model (CDHMM). Basically a CDHMM is a Hid-
den Markov Model where the emission probability
p(x|qi) is a continuous density function as shown
in Figure 1. A special case of this model is the ap-
proximation of p(x|qi) by Gaussian Mixture Model
(GMM).
Considering a phoneme as the basic unit of

Figure 2: Three State HMM Phoneme Model
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speech, each phoneme is associated with a hid-
den markov model with a predefined topology that
generally is tri-state phoneme topology although
other topologies exist like one state representing a
phoneme or more than three states.
The general process of the phone recognition

then is summarized as follows:

1. Feature extraction: This process converts the
speech signal into a sequence of acoustic vec-
tors X = (x1, x2, ..., xN ).

2. Training phoneme models: A slightly modi-
fied version of Baum-Welch algorithm is used
to estimate the parameters of the HMM/GMM
phoneme models.

3. Recognition phase: Given a set of trained
phoneme models, recognition is carried on by
using Viterbi decoding algorithm with back-
pointers to recover the path.

With viterbi decoding it’s possible to recover the
sequence of models that gave rise to the maximum
likelihood probability p(x|ωk) where ωk here is the
phoneme model.
Although HMM’s are the most efficient approach

developed so far for modeling the temporal variabil-
ity in speech, they suffer from several drawbacks.
Several assumptions are made by using HMM’s :

• Observation independence assumption: acous-
tic features are not correlated and conditional
independence exist given a state at time t.

• First order markov model: the probability of
transition to state qi at time t only depends on
the state qj at time t − 1 and is conditionally
independent from the history of the chain.

• Probability of transition are assumed station-
ary (assumed to be time invariant).

• Poor discrimination due to the training algo-
rithm, which maximizes likelihoods instead of
posterior probabilities.
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The drawbacks related to modeling the emission
probability p(x|qi) with GMM’s:

• Modeling the variability and non-linearity of
speech acoustic features could end up estimat-
ing a very high number of parameters by as-
suming Gaussian mixtures.

• Acoustic feature vectors are assumed to be un-
correlated to reduce the parameters to be esti-
mated in the covariance matrix of the gaussian
to only the diagonal.

The assumption of uncorrelated acoustic features
in the HMM/GMM is the main drawback and
that’s why other approaches to estimate the emis-
sion probabilities were proposed such as the hy-
brid model of interfacing a multi-layer perceptron
(MLP) with an HMM as discussed in the next sec-
tion.

4 Hybrid HMM/MLP Ap-
proach

Given the difficulties presented in section 3 of mod-
eling the emision probabilities with GMM’s, an al-
ternative was proposed by using Multi-Layer Per-
ceptron to model the emission probability in the
HMM [6] .
Attempts in the past of using Artificial Neural

Networks (ANN) to model the whole process of
speech recognition ended in failure given that there
is a main lack in the considering neural networks
for the whole task: they we not tailored for time
sequential inputs. For that reason, they are inter-
faced with an HMM to model the stationary emis-
sion probability given a state.
Advantages of using a MLP to approximate emis-

sion probabilities:

1. It provides discriminative learning.

2. It can approximate in theory any kind of non-
linear functions of the input.

3. There is no need for strong assumptions about
the statistical distributions of the input fea-
tures.

4. There is no need to assume uncorrelated acous-
tic fetures. Additionally, by presenting several

sequential frames in the input it’s possible to
model the contextual information.

Thus considering ANN’s for modeling emission
probabilities constitute a promising approach. The
training algorithm used is the Backpropagation –ref
with the error criteria as the cross-entropy function.
Labels to complete the training has to be privided,
so acoustic features presented in the neural network
has to be correspondingly labeled the the speech
unit class they belong to. Thus, segmentation of
the utterances to identify and label the speech units
is necessary. Embedding MLP training in a Viterbi
algorithm as presented in [6] shows that an iterative
process of training with an initial segmentation is
possible and eventually improve the initial segmen-
tation. Here are provided the steps for the Viterbi
alignment:

1. Starting only with the phonetic transcription
of the training and cross-validation sets, these
two sets of sentences are linearly segmented,
respectively providing the MLP output targets
for the training set as well as for the cross-
validation set.

2. The MLP can then be trained (using cross-
validation), which provides new weights and,
consequently, new emission probabilities for
the Viterbi matching.

3. Using this newly trained MLP,Viterbi match-
ing is performed on the training and cross-
validation sets, providing us with new segmen-
tations and, consequently, with new output
targets for MLP training and cross-validation.

4. This process is iterated until the score (prod-
uct over all the optimal path probabilities) on
the cross-validation set (and not on the train-
ing set) begins to decrease. Thus, two cross-
validations take place in this process: one for
the MLP itself, and one for the Viterbi match-
ing.

The number of hidden units in the output layer
is as the number of states of the HMM, thus if we
consider phonemes as speech units and n phonemes
each one with one state then the output layer would
have n units with a softmax squashing function to
approximate a probability distribution over the set
of output units. If a three state phoneme model
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is considered, then the output layer would have 3n
units as output.
Theoritical and experimental results have shown

that the MLP output values may be viewed as esti-
mates of Maximum a Posteriori (MAP) probabili-
ties [6] in a sense that it outputs p(ωk|x) (or p(qi|x)
as every state is associated with a phoneme). But
as mentioned before, the main use of the MLP is to
estimate the likelihood p(x|qi) (emission probabil-
ity). A way to overcome this problem is by using
Bayes Theorem and work with the scaled likelihood
in the viterbi training algorithm:

p(x|qi)
p(x) = p(qi|x)

p(qi)
(2)

where p(qi) is the phoneme prior probability es-
timated from the training set and p(qi|x). Working
with scaled likelihood won’t hurt the recognition
process as all viterbi decoding probabilities will be
devided by the same constant p(x). To summarize,
the general algorithm for training a Hybrid HM-
M/MLP :

1. Extract the acoustic features from with speech
signal with an initial speech unit segmentation

2. Train the MLP using the acoustic features vec-
tor as the input (one by one or concatenating
several frames is possible to model context de-
pendency of a central frame.)

3. Train the HMM using Viterbi algorithm and
with the scaled likelihood emission probabili-
ties that the MLP outputs.

4. Iterate over the whole process.

5 Deep Neural Networks
Inspired by the architectural depth of the brain,
neural network researchers had wanted for decades
to train deep multi-layer neural networks, but no
successful attempts were reported before 2006 .
With deep achitectures we refer to architectures
having more than one hidden layer as is the case
of MLP. It was not until Hinton et. al. at univer-
sity of Toronto introduced Deep Belief Networks
(DBN) [] exploiting an unsupervised learning algo-
rithm for each layer, a Restricted Boltzmann Ma-
chine (RBM). Since then a whole new paradigm od
training efficiently emerged called Deep Learning.

Figure 3: Restricted Boltzmann Machine.

5.1 Restricted Boltzmann Machine
The Restricted Boltzmann Machine (RBM) is a
type of an Energy Based Model represented as an
undirected graphical model that basically consists
of two layers: a visible layer and a hidden layer
as shown in figure 3 where the units of the visible
layers are connected with weighted connections to
the hidden layer and viceversa with the restrictions
that units from the same layer are not connected
(a special case of Boltzmnann machine where they
are allowed to be connected). The hidden layer
only consists of binary units, either 0 or 1, but the
visible layer could be of real-valued data.
An energy function E(v, h) is defined to map the

visible and hidden units configuration of the RBM
to an energy space and the training algorithm con-
sists of driving the model parmeters (connections
weights and units bias) such that it maps a current
configuration to a locl minimum of energy state.

E(v, h) = −b′v − c′h− h′Wv (3)

where b and c are the bias of the visible and hidden
units respectively and W is the connections weights
matrix, v and h are the values of the input units
and hidden units respectively.
When presented an input unit, the hidden units

binary output is computed as :

P (h|v) = sigm(ci +Wi·v) (4)

And the visible units could also be reconstructed
given hidden units values as:

P (v|h) = sigm(bj +W ′·jh) (5)

A special case of the real-valued data is to con-
sider the visble unites disributed as a normal dis-
tribution. This case is calles Gaussian-Bernoulli
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RBM (GRBM) and is the main approach to rep-
resent real-valued data in acoustic modeling ap-
proach. In this case the reconstruction of the visible
units is:

P (v|h) = N (bj + σjW
′
·jh, σ

2
j ) (6)

Learning the standard deviations of a GRBM
is problematic for reasons described in –ref so for
training a GRBM the data is normalized to have a
zero mean and a unit variance.

The original algorithm for training a RBM is :

∆wij = ε(< vihj >data − < vihj >model) (7)

where < · > refers to the expectation.
Getting an unbiased < vihj > sample from

data can be done by 4, but getting an unbiased
< vihj >model from the model is moremuch more
difficult. It’s possible to do it by alternating Gibbs
sampling starting from a given visible units and
sampling each hidden unit sequentially for long pe-
riod where as shown in —ref convergence is en-
sured.
But, an efficient method used is called Con-

trastive Divergence [7] to train the RBM. Given
that Gibbs sampling takes computational efforts,
Contrastive Divergence –ref is used and instead of
the model sample, it’s changed with a reconstruc-
tion sample:

∆wij = ε(< vihj >data − < vihj >recon) (8)

The training steps are depicted as follow and is
caleld Contrastive Divergence (CD1):

1. Set the visible units as the input values of the
feature vector.

2. Compute the hidden units by using 4

3. Reconstruct the visible units given the hidden
units using 5

4. Compute < vihj >data by multiplying c1 =
h′ ∗ v.

5. Compute the hidden units by using 4, we will
refer to the values of the hidden units in the
second iteration as h2

6. Reconstruct the visible units given the hidden
units v2 using 5

Figure 4: Deep Belief Network.

7. Compute < vihj > recon by multiplying c2 =
h′2 ∗ v2

8. ∆w = ε(c1 − c2)

9. Repeat the process for each feature input.

It’s enough to perform only one iteration of Con-
trastive Divergence and that’s why it’s symbol-
ized as CD1. Experiments with more iterations
didn’t yield significant improvement. What hap-
pens in theses energy based generative models is
that they are not only trying to encode the in-
put but also to capture the statistical structure in
the input, by approximately maximizing the log-
likelihood (CD1 is an approximation and not the
excact log-likelihood).

After succesfully training an RBM, it’s possible
to sample from it supposing that it learned effi-
ciently the underlying statistical structure of the
data. An important note is that training the RBM
is an unsupervised learning method as no labels/-
targets are required.

5.2 Deep Belief Network
The RBM is the building block of a DBN where
RBM’s are stacked one on the top of the other
sharing layers to build a DBN for the unsupervised
pre-training. The Idea here is stack RBM’s one on
top of another in a way that the hidden unit of
the lower RBM is the input unit of the upper level
RBMas shown in figure 4.

7



Figure 5: Deep Neural Network.

Then training DBN consists of training stacked
RBM’s sequentially one after another given an in-
put vector in the first layer. So basically each layer
encodes the satistical structure of the layer directly
beneath it and in a way a Multi-Level Feature Rep-
resentation is created of the original input vector.

5.3 DBN-Deep Neural Network
After performing the unsupervised pre-training of
the DBN, the undirected connections between lay-
ers in the DBN are converted to directed connec-
tions and an output layer of the desired type (logis-
tic, sigmoidal, softmax etc..) is added as the top-
level layer as shown in figure 5 to form a Deep Feed
Forward Network or Deep Neural Network with it’s
connection weights set to zero. After converting a
DBN into a DNN a fine-tune step is performed us-
ing the Backpropagation algorithm. Note that this
step is used with labels as a normal Backpropaga-
tion algorithm.

6 Hybrid HMM/DNN (Deep
Neural Networks) Ap-
proach

The hybrid approach of interfacing a Hidden
Markov Model with a Deep Neural Network is sim-

ilar to the hybrid HMM/MLP approach but with
an unsupervised pre-train step before starting with
the supervised training algorithm. So first an un-
supervised training of the DBN is performed with
the desired number of stacked RBM’s with all the
acoustic features is performed to drive the weights
to initial values that the supervised training will
use. Then the DBN is converted to a DNN by
adding an output layer with a number of output
units as the number of states of the HMM trained
with the same supervised training as shown in 4.
In figure 6 shows the final architecture of the Hid-

den Makov Model interfaced with the Deep Neural
Network. The final architecture is pretty similar
to interfacing HMM with MLP but with more hid-
den layers. Reuslts of different architectures with
the same approach of HMM/DNN on the TIMIT
database are shown in table 6 .

Method PER
Bayesian Triphone HMM-GMM 25.6%

Monophone DBN-DNN (Six Layers) 22.4%
Monophone DBN-DNNs On FBANK (Eight Layers) 20.7%
Monophone MCRBM-DBN-DNNs (Five Layers) 20.5%

Nowadays the best results of Automated Phone
Recognition on the timit database were obtained by
using a hybrid approach of HMM/DNN with five
layers with a Phoneme Error Rate (PER) of 20.5%.
(add results table)
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Figure 6: HMM/DNN Final architecture.

7 Summary
Based on the results of phone recognition on the timit database, deep architectures seem to be promising
considering that it has outperformed the traditional systems based on Gaussian Mixtures. One of the
key feature in using generally a neural network is the lack of assumption of uncorrelated fetures and
thus a better modelling of the emission probabilities but it’s more difficult to use given that there is a
need in labaled data that most of time we don’t have. In deep architectures there is no need of labeled
data in the pretraining phase thus giving a solution to that difficulty so with deep neural networks it’s
possible to pretrain with huge amount of unlabeled data and then finetune with a much smaller labeled
dataset thus we have both advantages here: correlated features assumption and the use of unlabeled
data in pretraining.
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