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ABSTRACT

Bimodal Audio-Visual Automatic Speech Recognizers (AVASR)
happen to be highly relevant in noisy environments. However,
the choice of the visual features and the way of combining them
with the acoustic features has been a matter of research in the
last decades. This paper makes an overview of the latest work
in that field. The most used visual features are mainly based
on the lip geometry, including sometimes their motion and tex-
ture. When combining the two modalities, two different ap-
proaches are adopted: feature fusion and decision fusion. The
feature fusion combines both audio and visual features in a
single feature vector while a single classifier is used to make a
decision. On the other hand, the decision fusion works sepa-
rately with visual and audio modalities by using two classifiers.
Then, the final decision is made by combining decisions from
both modalities. We have seen that combining methods based
on empirical reliability measurements leads to more suitable
decisions. Eventually, this work shows that AVASR systems
rise the accuracy comparing to the audio-only ASR systems,
especially in extreme conditions.

1. INTRODUCTION

Automatic Speech Recognition (ASR) has been increasingly im-
proved during the last decades, due to its particular interest in ap-
plications in human-computer interaction. Most of the research
and the most successful works have been focused on acoustic-only
based recognition. However, the low accuracy of these recog-
nizers in noisy environments leads to the development of multi-
modal systems. Figure 1 shows the main processing blocks of the

Figure 1: Main processing blocks involved in the AVASR (Source:
[1]).

AVSR. Video and audio signals are processed separately for fea-
ture extraction for audio-visual fusion. Thus, Audio-Visual ASR
(AVASR) mimics the natural-human lip-reading mechanism to im-
prove their speech understanding skills. In the present paper we
make an overview of the AVASR related work, focusing on the
most recent systems found in the literature. In the Section 2 we

summarize the different visual-feature extraction methods used in
AVASR. In Section 3, the most-used ways of modality-fusion are
presented. Section 4 explicitely describes both archictecture and
performance obtained by the different works reviewed. Finally,
Section 5 states the conclusions of this state-of-art analysis.

2. VISUAL FEATURES

The improvement in the word error rate due to the combination of
vision and audio in automatic speech recognition has been proved
in many papers. The question is how to choose and extract rel-
evant vision features for a maximum improvement. Three types
of features mainly appear in the literature: the lip-geometry, the
lip-motion, and the lip-texture. Some systems combine several of
these types, but it is more relevant to study them separately before
combining, as done in [2].

2.1. The lip-geometry

By assuming that the speech information is contained into the out-
line of the lips, one should be able to detect them precisely. Every
single system has its own lip detection algorithm, which is often a
combination of a face detector and a lip-outline detector, as shown
in Figure 2.

Figure 2: Use of valley for tracking the lip-outline. Word “five” is
used on the example by showing snapshots every 60 ms [3].

There are two main categories of information in the lip ge-
ometry: the shape, i.e. the outline, and the geometric character-
istics, i.e. height, width, area, etc. The outline is often modeled
with polynomial coefficients. In [3] the 2D outline of the lips is
parameterized by quadratic B-splines, which is a combination of
low-degree polynomials, since it requires fewer parameters than
a regular polynomial interpolation. Moreover, in order to get the
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Figure 3: Geometric features used in [2]. Six facial points are used
to compute the features: outer-lip horizontal width (X), outer-lip
vertical width (Y), outer-lip area (area inside of the ellipse), and
angle of the outer-lip corner (angle)

most relevant features, it is possible to find a reduced basis to rep-
resent the control points of the outlines by projecting on the affine
basis or by applying a Principal Component Analysis (PCA). The
affine basis is however insufficient to model all the relevant defor-
mations of the lips. Therefore the method used in [3] is PCA and
the authors have come up with the result that 99% of the deforma-
tion information of the lip contour lays in the first six components.
It is also possible to use both a frontal and a profile vision of the
face. Both give different features, the profile view features are the
high-contrast edges whereas the frontal view features are the com-
bination of the edges and the intensity valleys, which are extremely
relevant in speech recognition.

As mentioned earlier, it is also possible to use the geometrical
information of the lips: the widthX , the height Y , the area, and the
angle. It might be relevant to take into account the first derivative
of these parameters, since the motion of the lips is also interesting.
In [2], after having tested independently every single parameter,
the authors have come up with the three best individual feautures:
Y , dY/dt and d(angle)/dt, see Figure 3.

The test of several combinations of parameters provides the
idea of what the best combination is: [X,Y, d(angle)/dt], as shown
in the Table 1. Other researchers present in [4] the articulatory
feature sets. Those are close to the geometrical ones but present a
higher level of interpretation. The features are: Lip Opening (with
values closed, narrow, medium, wide), Lip Rounding (Yes, No),
Labio-Dental (Yes, No), and another one involving the teeth.

2.2. The lip-motion

This feature supposes that important information of the speech is
contained in the lips motion. Moreover, the lip tracking processing
time must be significantly low, especially in cases where the ASR
is used for real-time applications. In [3] the B-splines are also used
for the lip velocity: the motion is represented by the coordinates
of the splines varying over time. The experience shows that the
translation on the horizontal axis is not relevant, because it is due
only to the head displacement in the image. Again, by applying a
PCA to these features without the horizontal displacement, the ob-
tained feature needs only the six first components to recover 99%
of the lip motion information. Researchers in [5] have also used
an image-based method to represent the lip motion information.
The feature is based on the motion vectors: two matrices Vx and
Vy are computed, which are the x and y-coordinates of the motion
vectors between two consecutive frames. The final feature set is
the 50 first coefficients of the 2D-DCTs, i.e. a vector of length
100. The 2D-DCT presents the advantage to concentrate the en-
ergy of the motion vectors matrix into the first coefficient, leading

to a sorting of the components. This method takes therefore the 50
most relevant coefficients of the matrices.

2.3. The lip-texture

This third type of feature is based on the common practice of
working with intensity information of the lip image. The 2D-DCT
transform based on the intensity is computed and the discrimina-
tion content is found in it. Then, the feature set is composed of the
50 most discriminative DCT coefficients.

2.4. The Active Appearence Models

The AAMs are not part of any of the upper categories because
they are based on the Active Shape Model (ASM) to match the
shape, but add also information about the texture. AAM ana-
lyze the shape variability of whole faces, represented by landmark
points in a low-dimensional space. The important relative differ-
ence to image-based transform is that AMMs explicitely capture
separately the shape and the texture variation of the face.

3. COMBINING AUDIO AND VISUAL FEATURES IN A
SINGLE CLASSIFIER

Models for audio-visual integration can be divided in two main
approaches:

1. Early Integration (feature fusion): Visual and acoustic fea-
tures are combined to create a single feature vector and thus
a single recognizer is used.

2. Late Integration (decision fusion): Each stream is processed
by an independent classifiers that gives its own output. Later,
the output of both visual and acoustic classifier are com-
bined to set the final decision.

In the following sections we are presenting some of the most rele-
vant methods used lately in the audio-visual fusion task.

3.1. Dynamic Bayesian Networks and HMM

Most of the audio-visual models used in AVASR systems includ-
ing HMMs and its variations are particular cases of the Dynamic
Bayesian Networks (DBN). DBNs are direct graphical models of
stochastic processes in which the hidden states are represented by
individual variables or factors [6].

The single-stream HMM approach is based on the concatena-
tion of both visual and acoustic features in a single feature vector
and the use of a HMM. However, the dimension of this vector
can be large, causing problems due to the curse of dimensionality.
Moreover, this method is not considered the best solution since it
can not easily represent the loose timing synchronicity between
audio and visual features.

A more complex HMM model is needed when trying to han-
dle a problem with additional complexity for audio-visual correla-
tion and loose synchronicity between sequences. There are several
HMM-based approaches that solve this issue including factorial
HMM, coupled HMM and multi-stream HMM.

The factorial HMM model (FHMM) for AVASR has two streams
and a finite number of states. Thus, the hidden states of each
modality contribute to the emission of a single observation. In
other words, the hidden state is distributed. The factors (hidden
variables) of each stream are independent but both contribute to a
single observation.
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Table 1: Performance of the different single-feature combination evaluated in [2]. They show that the combination [X,Y, d(angle)/dt] is
the best to increase the AVASR accuracy

Figure 4: FHMM (up-left), CHMM (up-right), MSHMM (down)

On the other hand, the coupled HMM model (CHMM) [7] al-
lows the hidden nodes from each stream to interact with each other
while each of them has its own separate observation. Thus, the
CHMM can be seen as a set of HMMs, one for each data stream
where all the nodes at time t are conditioned by the nodes at time
t− 1 for all the related HMMs.

Both FHMM and CHMM allow asynchrony between the se-
quences since different streams have separated hidden state se-
quences.

On the other hand, the state-synchronous Multi-Stream HMM
(MSHMM) structure handles multiple streams for temporal data.
In principle, it is used when the streams are synchronous and in-
dependent, by assuming that there is a single hidden state for each
time slot. Thus, a single hidden state is tied to independent obser-
vations for each modality, that are generated by different models.
However, there are different variations of the MSHMM that al-
low to work with non synchronous multi-stream data, which is the
common case for AVASR.

3.2. Reliability-based fusion methods

The work presented in [5] solves the multimodal integration by a
method called reliability weighted summation (RWS) based on an
weighted average of a set of scores. The total log-likelihood is
defined by

ρ(λr) =

N∑
n=1

ωnρn(λr) (1)

where ωn is the weight coefficient for modality n, with
∑

n ωn =
1, and ρn(λr) are the individual likelihoods (scores) for each modal-
ity. Thus, the reliability estimation techniques are applied to esti-
mate the weight coefficients. Ideally when the acoustic speech
is noise-free, the difference between the outputs of the HMMs is
large. On the other hand, when the signal is noisy the difference
becomes small. Thus, the reliability (Sn) used in [5] is defined for
the modality n as the difference between the likelihood ratios from
the two best class candidates,

Sn = ρn(λ∗)− ρn(λ∗∗) (2)

where ρn(λ∗) and ρn(λ∗∗) indicate the score for the first and sec-
ond best class candidate, respectively. Another approach is used in
[8] to estimate the reliability

Sn =
1

NC − 1

NC∑
i=1

(ρn(λ∗)− ρn(λi)) (3)

In practice, a normalized version of the reliabilities are used to
estimate the weight factors

ωn =
Sn∑
j Sj

(4)

In [9] a Neural Network (NN) based architecture is presented
for combining the decision for both audio and visual measured reli-
abilities by an adaptive optimal weighting that enables the bimodal
recognition system to be robust against different noisy conditions.
After the acoustic and visual systems perform recognition sepa-
rately, their outputs are combined as a weighted sum (see Equa-
tion 1). These weights coefficients, involved in the score of the
final classifiers, are obtained by a Neural Network that maps op-
timally the input/output relationship between the two reliabilities
and the integration weight. The type of NN used in the proposed
method is multilayer perceptrons (MLPs).
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Figure 5: Neural Network based system for integrating Audio-
Visual decisions proposed in [9].

In [10] a novel framework based on multimodal fusion by
uncertainty compensation is introduced. There, both visual and
acoustic features are taken into account with different emphasis
depending on their level of uncertainty. Thus, the adaptive fusion
rules weight with lower coefficients the degraded features (e.g.
noisy acoustic signal, occlused face) by measuring empirically the
feature uncertainty, relying thus the decision on the cleaner stream.
Moreover, this technique is applicable to either synchronous or
asynchronous multimodal architectures (e.g. FHMM, CHMM,
MSHMM).

4. REAL SYSTEMS: ARCHITECTURE AND
PERFORMANCE

In this section we make a small overview of some of the latest
Audio-Visual ASR found in the bibliography.

4.1. Kaucic et al. 1996

In [3] a real-time lip tracker algorithm based on a Kalman filter
for detecting the lips contour is presented. The visual informa-
tion is added to the acoustic features to enhance the performance.
Composite features are created by the concatenation of both acous-
tic and visual features. The authors test the system on a small
isolated-word vocabulary for acoustic-only, visual-only and com-
posite features by using Dynamic Time Warping (DTW) as recog-
nition algorithm. Experiments showed that the error rate decreases
around the half when combining both visual and acoustic features
rather than using acoustic-only features.

4.2. Luettin et al. 1998

In [11] is presented a multi-stream HMM system taking the shape
and the intensity of the lips, i.e. geometry and texture features, as
visual features. They lower the WER from 3.4% with audio only
to 2.6% by combining audio-visual features.

4.3. Nefian et al. 2002

In [6] both CHMM and FHMM models are tested for the audio-
visual speech recognition task. Both models allow asynchrony be-
tween modalities while preserving their natural correlation over
time. For the visual features they use different combinations (1D
DCT, 2D DCT, LDA, template) obtaining the best performance for
the combination [ Window, 2D DCT, LDA ]. They make experi-
ments for a speaker dependent isolated word ASR, obtaining the
best performance results for the CHMM (see Figure 6). The results

Figure 6: Results presented on [6] for acoustic-only, visual-only,
and combined features under different level of signal-to-noise ratio
(SNR). The results show a high increase in performance for using
combined audio-visual features, especially for low SNRs using the
CHMM

show a significant increase on the performance when using audio-
visual features compared to only-acoustic features. This gain is
especially high for low SNR.

4.4. Kaynak et al. 2004

The system presented in [2] uses geometric visual features based
on the lips to enhance the performance of the ASR in noisy envi-
roments. Their geometric approach is based on 6 facial points to
compute the different features (see Figure 3): outer-lip horizontal
width (X), outer-lip vertical width (Y), outer-lip area (area inside
of the ellipse), and angle of the outer-lip corner (angle). The rel-
evance information of each possible single visual feature is used
to find the best configuration for bimodal recognition. They found
that the lip apertures and the first derivative of the lip corner an-
gle are the most representative. For the recognition algorithm they
use the well-known HMM. Tests are done for acoustic, visual, and
combined features under different levels of noise. The results show
a highly improved accuracy (around 20%) for using 3 labial geo-
metric features (for SNR(dB) = 0). More complete results are
shown in Figure 7.

4.5. Çetingül et al. 2006

In [5] a multimodal speaker/speech recognizer is introduced. The
acoustic features are represented by the MFCCs, while lip texture
and motion is estimated for the visual features. For the lip texture
they use the 2D-DCT coefficients of the grey levels. The lip mo-
tion is computed by a discriminative analysis of the dense motion
vectors. The combination of the audio-visual information is done
in the decision layer by using RWS decision rule. The conclusions
state that including lip motion modality increases the performance
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Figure 7: Results presented on [2] for acoustic-only, visual-only,
and combined features under different level of signal-to-noise ratio
(SNR). The results show a high increase in performance for using
combined audio-visual feautures, specially for low SNRs

of the recognizer. Nevertheless, the performance gain achieved is
not significant.

4.6. Lee et al. 2008

In [9] the system is divided into three subsystems: visual feature
extraction, audio feature extraction and audio-visual fusion, which
are optimized independently. HMMs are used to model the visual
data, and are improved by the Hybrid Simulated Annealing (HSA)
algorithm, which allows escaping from local extrema and reaching
the global minimum. The acoustic data correlation is modeled by
HMMs with a Gaussian mixture model. The data fusion is com-
puted by an artificial neural network. They obtain a result shown
Figure 8, for different noise models and levels. The improvement
compared to an audio-only system for SNR(dB) = 0 is more
than 20%.

4.7. Saenko et al. 2009

In [4], an AVASR using dynamic Bayesian networks (DBN) is in-
troduced. For the visual features they use articulary features such
as lip opening or lip rounding. A multi-stream of discriminative
articulary features SVM classifiers feeds the input of the DBN,
that represents streams allowing asynchrony between them. Ex-
periments show that using articulatory features outperform con-
ventional acoustic-only model’s performance by around a 10%.

4.8. Papandreou et al. 2009

In [10] the uncertainty of each feature is exploited to lead to a
highly adaptive fusion rule. The recognition is computed with
HMM algorithm. As shown Figure 9 the W -label leads to much
better results, and means that the weights are optimally updated
regarding the uncertainty of the features. The type of features used
here is also relevant to notice: the visual features are extracted
with the AAM framework, which contains an optimal number of

Figure 8: Performance of the acoustic-only, visual-only and com-
posite features for the AV digit-ASR presented in [9] for different
types of acoustic noise and levels of SNR(dB): (a) WHT, (b) F16,
(c) FAC, (d) OPR.

Figure 9: Performance of the Product-HMM-based ASR presented
in [10]. The authors show that the W -label updating system re-
garding the uncertainty of the features leads to much better accu-
racy.
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coefficients for the shape and the texture of the lips: six-shape/six-
texture visemic AAM visual feature set. They reach a classifica-
tion accuracy of around 85% for a SNR of 0dB.

5. CONCLUSIONS

In this work we made an overview of the latest and most rele-
vant researches on the field of Audio-Visual ASR. Both feature
extraction methods and audio-visual fusion mechanisms were an-
alyzed. Generally, geometric information of the lip-outline and/or
its motion is commonly used for enhancing the accuracy as visual
features. For that purpose, different feature extractors have been
introduced in the literature. On the other hand, there are different
approaches for combining both modalities, either by using feature-
fusion or decision-fusion approaches. Some systems introduce a
mechanism to weight the uncertainty of each modality regarding
empirical measurements in order to make a more consistent deci-
sion. It is shown that this approach leads to better performance.
Nevertheless, it is seen that the improvement of adding the vi-
sual modality is moderate but it becomes significantly high for low
signal-to-noise rates. However, the comparison between systems
is not a trivial issue since different methods are tested for different
purposes and with different databases (single-word, digit, etc).
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