
Automatic phoneme recognition of continuous

speech in MATLAB

A course project in DT2118, Speech and Speaker Recognition

Niklas Vanhainen
niklasva@kth.se

Urban Thunberg
ubb@kth.se

3rd June 2011



Abstract

In this project we have implemented an automatic phoneme recognition system
for continuous speech in MATLAB. The system is based on Hidden Markov
Models trained on individual phonemes using labeled data. The trained phon-
eme models are then concatenated into a larger model, which in turn is trained
using unlabeled speech data. The TIMIT corpus provided us with the labeled
and unlabeled data used when training and testing the models. Features used
for modeling the acoustics consist of the standard Mel-Frequency Cepstral Coef-
ficients. We make use of Gaussian Mixture Models to represent the trained
speech data. The concatenated model is evaluated using the Viterbi algorithm
to provide us with the most likely sequence of phonemes. An experiment with
optimizing phoneme models using a genetic algorithm is performed. In the
evaluation phase we will look at how well each phoneme model performs alone,
as well as how well the concatenated model can represent the actual sequence
of phonemes within a spoken sentence. The results are satisfactory. Recogni-
tion rate of individual phonemes is quite good at 61%, and the recognition of
continuous speech is at least decent in most cases.



1 Introduction

Using our voice is a primary method for communication between humans, and
to apply the same on a human-machine communication framework, a robust
speech recognition system is crucial. Speech recognition and spoken language
understanding can both be regarded as pattern recognition problems[1], and the
sequential nature of speech makes Hidden Markov Models a particularly good
choice of method to use.

In this course project, we set out to create an automatic speech recognition
system (ASR). Numerous types of ASRs have been created through the years
using various methods. To get a deeper understanding of the basics of a system
based on the popular method of Hidden Markov Models (HMM), we have chosen
to implement our own HMM-based ASR system using MATLAB. The HMM is
a statistical model based on a hidden Markov chain, where each hidden sate of
the chain correspond to an output distribution. In our case, each state-output
distribution is a Gaussian Mixture Model (GMM). A GMM is a weighted sum
of multiple Gaussian distributions which given enough mixture components can
model virtually any distribution possible.
The main goal for the system is to classify a sequence of phonemes uttered in
a prerecorded continuous speech sentence. The acoustics of a phoneme, which
is the smallest segment within an utterance, are well described by its uncorrel-
ated Mel-Frequency Cepstral Coefficients (MFCC), combined with its first and
second derivatives as well as the total energy present within an utterance. The
Mel-frequency cepstrum is a transformation of the cepstrum which is intended
to model the way humans perceive sound, with a higher sensitivity to differences
in lower frequencies than higher frequencies.[1] By using the MFCCs together
with a HMM that makes use of Gaussian distributions to represent the state
outputs, we have a good basis for our ASR.
The phoneme models are trained using the Baum-Welch algorithm which re-
estimates the HMM parameters to fit the phoneme acoustics in our training
data. For our ASR, three states should be sufficient to model an utterance of a
phoneme. One state for the beginning, one for the middle and one for the end
of the phoneme. We may further investigate the use of a variable number of
states depending on the phoneme to better suit certain phonemes that tend to
be very short and have limited variation of the acoustics.

Many improvement steps have been proposed in the preprocessing stage, such
as Cepstral Mean Normalization (CMN) and Vocal Tract Length Normalization
(VTLN). CMN is used to handle convolutional distortions[1]and VTLN to re-
duce the degradation in speech recognition performance caused by variation in
vocal tract shape among speakers[2], so that for instance a child’s voice can be
evaluated against a model trained with adult voices. By evaluating the system
with different parameters and creating a confusion matrix for the phonemes we
can get a measure of how accurate the phoneme models are.

Once phoneme models have been trained, we concatenate these models into
a larger model and once again use the Baum-Welch algorithm to re-estimate
the parameters of this new, larger, HMM to take into account for instance the

1



transition between phonemes. Once this model has been trained, we use the Vi-
terbi algorithm to calculate the most likely sequence of states given speech data
of an entire sentence, and thereby also the most likely sequence of phonemes.

2 Method

2.1 Data

To get the features needed for training our models, we extract the MFCCs
from the TIMIT corpus raw speech wav-files. We make use of the labels in-
cluded in each sentence to pick out and collect phoneme data sets from the
training sentences. Before training, the HMM is initialized as a finite state
Left-Right HMM with equal transition probabilities, as the state propagation
for a phoneme utterance always moves in one direction. The initial means of
the state output distributions are estimated using the k-means algorithm, and
using these centroids, initial covariances are estimated to provide good initial
estimates for expectation maximization. We initiate the covariance matrix as a
diagonal covariance matrix, because other types of covariance matrices requires
many more parameters to be trained. This can be done with the underlying
assumption that elements of the feature vector are independent[3].

The hamming window used in the feature extraction process is 10ms with
an overlap of 5ms. Many use 20ms windows, but we decided to use 10ms
windows in order to make sure that data from short phoneme examples can
also be included in the training. As the TIMIT corpus has a very detailed
segmentation of phonemes, we need to introduce some simplification. This is
mostly performed in the same way as in Lee and Hon’s early work using the
TIMIT database[4], with the difference that we concatenate consonant closures
with their bursts, so for instance a “dcl” followed by a “d”, will be considered
as a unit “d”. This is because these phonemes are often very short, too short
to fill a 10ms hamming window.

2.2 Model Training

Once all initialization is done, the Baum-Welch algorithm will train the HMM
parameters to fit the training data. After a model is trained, we have two checks
that may trigger a retraining if they fail. The first is to check if the log likelihood
of the model is not unreasonably low, in which case the model has converged to
a local maximum which we determine to be too low considering the results we
have seen from training, this check is triggered if the log-likelihood of the model
is negative. The second is to check that it is possible to somehow reach the
final state from each of the other two states within a phoneme model. This is
needed because the final state of each phoneme is the state which will later have
transition probabilities to other phonemes when the models are concatenated,
and if there is no way to reach the final state, there is also no way to reach the
next phoneme.

2



Figure 1: Concatenated HMM of
three finite state phoneme HMMs.

As we do not know before hand which
phonemes to classify in a sentence, we
need to create a large HMM incorpor-
ating all possible phoneme models and
transitions between them. The phon-
eme models are concatenated creating a
large transition matrix of 144 x 144 in
size (3 states for each 48 phoneme la-
bels used). To make transitions possible
between phoneme models we initialize an
equal transition probability from the final
state in each phoneme model to the 1st
state in all other models. The paramet-
ers of this large model are re-estimated
using the Baum-Welch algorithm on un-
labeled data, and transition probabilities
will adjust to make sure that likely phon-
eme sequences are more probable to be re-
cognized by the model than unlikely ones.
In the pursuit of increasing the system’s classification accuracy, we can make
use of CMN by subtracting the long term means from each cepstral coefficient.

2.3 Genetic algorithm optimization

While the Baum-Welch algorithm performs very well, it has a tendency to con-
verge to local maxima. In an attempt to improve the performance of our speech
recognizer, we implemented a genetic algorithm combined with the Baum-Welch
algorithm in order to optimize the Hidden Markov models, as Kwon et. al[5]
has done for isolated word Hidden Markov models. The steps involved in a
genetic algorithm are intuitively quite simple to understand. It involves creat-
ing new models from existing models by combining and randomly mutating the
existing models, and then choosing the best models to carry on and create even
more models in the next generation. We used an initial population of 30 mod-
els trained with a single iteration of Baum-Welch, and in each new generation,
four new models are created. We used 30 generations, and in order to speed
up convergence, we perform a Baum-Welch retraining every 10 generations. In
order to keep the computational complexity to a manageable level, after each
Baum-Welch retraining, the 40 worst performing models are discarded, leaving
the 30 fittest models.

We limited our use of the genetic algorithm to the initial phoneme models.
Using it for the concatenated sentence model was deemed too time-consuming
at this time, although applying this method to the concatenated model would be
an interesting experiment to make. This would however require a more efficient
implementation of the Baum-Welch and forward algorithm than what is possible
in MATLAB.

3



2.3.1 Crossover

A B

C

Figure 2: Crossover operation.

The crossover operation combines two
models and creates a new one. Given two
models, A and B, the crossover operation
creates a new Hidden Markov model by
combining a random state from model A,
with two states from model B. This is il-
lustrated in figure 2. We do this by simply
copying the output distributions corres-
ponding to the three states into the new
model, as well as the transition probabil-
ities and prior probabilities, the transition
probabilities are re-normalized in order to
make sure that all state-transition prob-
abilities still sum to one. The hope is that combining the states of multiple
models will create a model that combines the good traits of both models.

2.3.2 Mutation

The mutation operation randomly changes all HMM parameters. It does this
by simply multiplying random parameters by small random modifiers. There
is a 0.25 random chance that each parameter will be be mutated. The random
modifiers for the transition matrix and the mixture Gaussian mixture matrix
are distributed according to N (1, 0.01), and the modifiers for the mean and
covariance matrix is distributed according to N (0, 0.001). No experimentation
has been performed to find the best modifiers, simply because training using
the genetic algorithm takes a very long time and time was limited.

2.3.3 Selection

In each generation, a number of models are selected as part of the ”mating
pool”, that is selected to create new models using the mutation or crossover
operations. The models are sorted by fitness, and a larger proportion of the
better performing models are chosen to be part of this pool from which new
models can be created. Fitness is determined by simply applying the forward
algorithm to the population using the training data, where the fitness measure
is the log-probability generated by the forward algorithm. If we only include
the most fit models in the mating pool however, the amount of exploration
performed to find new solutions will be severely limited, so we also include some
mediocre as well as poorly performing models[6]. In order to avoid loosing good
solutions, we use what is called ”elitism”[6], that is we keep well-performing
models in the population instead of simply replacing them with their offspring.

4



3 Evaluation and Results

Phoneme Recognized phoneme
z y ix

z 0% 68% 13%

ch jh sh
ch 0% 65% 15%

uh ah ax
uh 7% 33% 13%

dh v b
dh 38% 9% 8%

Table 1: Commonly confused
phonemes

By evaluating test phonemes in the TIMIT
corpus against trained phoneme models, we
get a measure for the how well individual
phoneme models perform. This is done by
calculating the log likelihood of all mod-
els against the phoneme test data using the
forward algorithm, and picking the model
with the highest probability as the recog-
nized phoneme.Commonly confused phon-
emes when using the genetic approach are
shown in table 1 on page 5. The percent-
age of correct classification for each phon-
eme model is presented in table 3 on page 6
for two system configurations. Using a ge-
netic algorithm and cepstral mean normaliz-
ation, the system was tested with phonemes
included in a subset of 150 randomly chosen sentences within the TIMIT Cor-
pus. A mean phoneme model accuracy of 61.7% was achieved. Using the same
subset of 150 sentences and evaluating the system without genetic algorithm
gave an accuracy of 62.6%.

On the sentence level, the trained large concatenated HMM model is evaluated
against a whole sentence of unlabeled data using the Viterbi algorithm to get the
most likely state sequence, which is then translated to the phonemes represented
by the states. The Viterbi sequence of classified phonemes of a test sentence in
the TIMIT corpus gives a measure of the system’s phonemes classification and
their transitions within the sentence.

acc = 1− L(refi, reci)

Nref
(1)

Looking at the most likely phoneme sequence and the TIMIT corpus reference
sequence of a sentence we can take the Levenshtein distance between the two
and calculate the accuracy according to equation (1). The mean accuracy for a
few configurations of our system is presented in table 2 on page 6.

5



TIMIT Corpus
Training set Test set Genetic algorithm CMN Mean accuracy
M1+F2 i DR3* M Sa14 On (30 gen5 2 sent. iter) On 57%
M+F DR* F+M Sa1 On (30 gen 2 sent. iter) On 55%
M+F DR* F+M Sa1 Off (3 sent. iter) On 47%
M+F DR* Sa2 On (30 gen 2 sent. iter) On 43%
M+F DR* Sa2 Off (3 sent. iter) On 27%
M+F DR* Si On (30 gen 2 sent. iter) On 35%
M+F DR* Si Off (2 sent. iter) On 29%
M DR1-3 M Sa1 Off On 54%
M DR1-3 M Sa2 Off On 42%
F DR* F Sa1 Off On 50%
M DR1-3 F Sa1 Off On 39%

Table 2: Phoneme transition accuracy.

Phoneme aa ae ah ao aw ax ay b ch cl
G,C,DR* 74% 80% 42% 73% 56% 41% 71% 76% 0% 77%
C,DR* 73% 77% 39% 72% 44% 39% 79% 59% 65% 80%
Phoneme d dh dx eh el en epi er ey f
G,C,DR* 58% 38% 58% 31% 61% 61% 71% 74% 87% 84%
C,DR* 56% 38% 58% 39% 54% 57% 73% 72% 74% 82%
Phoneme g hh ih ix iy jh k l m n
G,C,DR* 71% 80% 44% 43% 73% 65% 63% 58% 70% 58%
C,DR* 69% 82% 41% 45% 69% 49% 61% 56% 73% 54%
Phoneme ng ow oy p r s sh t th uh
G,C,DR* 39% 60% 92% 54% 62% 92% 88% 56% 56% 67%
C,DR* 57% 46% 92% 57% 61% 82% 91% 53% 44% 7%
Phoneme uw v vcl w y z zh sil
G,C,DR* 69% 73% 73% 83% 68% 0% 67% 92%
C,DR* 71% 63% 73% 85% 68% 63% 67% 90%

Table 3: Phoneme model accuracy. G:Genetic, C:CMN, DR:dialects

1Male
2Female
3DR1-9 are the different dialects available in TIMIT
4Sa1, Sa2 and Si are types of sentences included in TIMIT
5Generations of the genetic algorithm

6



4 Discussion

Because the majority of speakers in the TIMIT corpus are male, our system
tends to perform better with male speakers than with female. The results of
optimizing the phoneme models with a genetic algorithm were generally en-
couraging, though further study is needed to determine whether the increase in
accuracy is because of the genetic algorithm or whether simply training multiple
phoneme models and choosing the ones with the highest probability generates
similar results. On the phoneme level, some phonemes got very poor results
using the genetic algorithm optimization compared to without, our hypothesis
is that this is due to overfitting to the training data, resulting a less generalized
model. Because of these very poor models, the mean accuracy on the phon-
eme level was actually somewhat lower than without genetic optimization, even
though the accuracy was generally higher for most phonemes. What is most
striking is the drastic increase in average accuracy on continuous speech using
genetically optimized phoneme models as part of the concatenated sentence-
model, despite the few very poor phoneme models and despite the fact that we
only had time to train the sentence model with two iterations of Baum-Welch.

Using a genetic approach to sentence model training may be prohibitively
expensive in terms of computational resources, though this would be an inter-
esting exercise which would likely require implementation in a native language
rather than in MATLAB’s interpreted code. We have several ideas for improv-
ing our system which we may attempt to implement. By implementing duration
modeling, we could probably decrease misclassification due to inserts of unreas-
onably short phonemes. Another improvement step would be to add phoneme
transition penalty to gain accuracy in the phoneme sequence classification. We
would also like to try implementing Vocal Tract Length Normalization in order
to reduce the variability between male and female speakers.

7



References

[1] X. Huang, A. Acero, H. Hon, et al., Spoken language processing. Prentice
Hall PTR New Jersey, 2001.

[2] L. Lee and R. Rose, “Speaker normalization using efficient frequency warping
procedures,” in icassp, pp. 353–356, IEEE, 1996.

[3] M. Gales, “Semi-tied covariance matrices for hidden markov models,” IEEE
Transactions on Speech and Audio Processing, pp. 272–281, 1999.

[4] K. F. Lee and H. W. Hon, “Speaker-independent phone recognition using
hidden markov models,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 37, no. 11, pp. 1641–1648, 1989.

[5] S. Kwong, C. W. Chau, K. F. Man, and K. S. Tang, “Optimisation of
HMM topology and its model parameters by genetic algorithms,” Pattern
Recognition, vol. 34, no. 2, pp. 509–522, 2001.

[6] S. Marsland, Machine Learning: An Algorithmic Perspective. Chapman &
Hall/CRC, 1st ed., 2009.

8


