
Dr. Jim Dowling 

School of Information and  

Communication Technology 

jdowling@kth.se 

 

ID2210 Project 2013 



Project Outline 

•Implement a decentralized search protocol in 
Kompics. 

•Analyze the results. 

 

 

•Kompics is a Java actor/component framework that 
contains a P2P simulator 

•Available at http://kompics.sics.se 



Things to Deliver 

•Your source code. 

•A report in pdf format, in which you should present 
your measurements and discuss the results. 

 

•Deadline: 24th May 2013 

- You will receive a grade on the scale F, FX, E, D, C, B, A. 

- If you receive an F for the project, you must repeat the 
project. 



Scaffolding Code 

P2PSimulatorJettyWebServer

SearchSimulator

Cyclon

https://github.com/jimdowling/id2210-vt13 

https://github.com/jimdowling/id2210-vt13
https://github.com/jimdowling/id2210-vt13
https://github.com/jimdowling/id2210-vt13


 



 



Random Networks and Gossiping 

•Efficient and robust information propagation 

- Low diameter networks, redundant paths. 
 

•Symmetry of random networks means we can only 
use message-passing to share information between 
nodes. 

 

•Leader-selection requires breaking the symmetry in 
random networks. 



Scale-Free Networks [Barabasi] 

•New nodes preferentially create links to those nodes 
with a higher number of links (positve feedback). 

•Symmetry breaking from a random network. 

- Nodes now can use information encoded in the topology to 
send search requests to hubs. 

Random Topology Scale-FreeTopology 

Preferential 

Attachment 

Algorithm 



Ant Foraging – from Random to Ordered* 

*Foraging patterns break both spatial and temporal symmetry 



Symmetry Breaking 

•Symmetry breaking is about going from a more 
disordered state to a more ordered state. 

 

•In overlay networks terminology, this means going 
from a random overlay network to a network with 
some structure or order. 

 



Leader Election 



Leader Election in Distributed Systems 

•Leader election concerns the designation of a single 
process as the coordinator of a task/service 
distributed among several processs. 

• Why have a leader? 

• A centralized coordinator simplifies the synchronization of 
processs. 

• Main problem to solve 

• If the central coordinator fails, the service provided by the 
coordinator and processs may fail.  

• The processes need to re-elect a new leader, if the 
current leader fails. 



Leader Election Algorithm Properties 

1. The algorithm is decentralized among a set of 
processes. Each node executes the same local 
algorithm. 

2. The election algorithm must somehow break 
symmetry among processes in the system. 

3. The algorithm reaches a terminal configuration in 
each computation, where there is exactly one 
process in the state leader. 

4. After the election algorithm has terminated, all 
participants must know who the leader is. 



Breaking node symmetry (ranking processes) 

•Breaking symmetry requires globally ranking all 
processes  

- E.g. rank ordering p1>p2>p3>p4 

 

•Ranking is typically based on one of either: 

1. Static global knowledge - leader election is based 
on global priority (e.g., process-id). 

2. Preference-based – processes in the group vote for 
the leader based on personal preferences 
(reliability, capacity, locality). 

 

 



Leader Election Saftey and Liveness 

•A good leader election algorithm should have the 
following properties: 

 

•Safety: A participating process P(i) has a variable 
elected(i) = ⊥ or elected(i) = P, where P is the 

non-crashed process at the end of the run with the 
highest identifier. 

•Liveness: All processes P(i) participate and 
eventually elected(i) != ⊥ or crash. 



Leader Election Performance 

•Leader election performance is measured using the 
number of messages necessary to complete the 
algorithm 

- #msgs is proportional to the total network bandwidth used. 



Example: Ring based leader election 

•There is no deterministic algorithm for leader 
election in an anonymous ring. 

•The initial state of all processes is completely 
symmetric. 

•All processes take the same action. 

•The new state is also symmetric. 

•This can be repeated forever. 

 



Break Symmetry by Introducing an ID into the ring 



Chang-Robert Leader Election Algorithm 

•Every node sends an election 
message with its id to the node 
on its left, if it has not seen a 
message from a higher node. 

•Forward any message with an id 
greater than its own id to its left. 

•If a process receives its own 
election message, it is the leader. 

•It then declares itself to be the 
leader by sending a leader 
message to all processes. 

 

0 

4 

2 6 

5 

1 

3 

7 



Aside: Distributed System Models 

•In a synchronous system model, timeouts are 
enough to detect leader failure. 

 

•In an asynchronous system model, unreliable failure 
detectors are typically used to identify leader failure. 
- Failure detectors to encapsulate timing assumptions 

- An unreliable failure detector gives suspicions regarding node 
failures 



Bully Algorithm (Garcia-Molina) 

•Assumptions 
- Nodes are numbered (static global knowledge). 

- Synchronous network model. 

• There are no network communication errors. 

• The network communication subsystem does not fail 

• Property 

• The highest-numbered node (bully) becomes the leader.   



Bully Algorithm 

•Three types of messages: 

- election messages used to announce an election; 

- ok messages sent in reply to election messages; 

- coordinator messages sent when the election is complete 
to announce the election result—the new coordinator. 

•An election is started by any process that detects 
(by timeouts) that the current leader has failed. 

•If the process that identifies the leader failure has 
the highest remaining ID, it becomes the leader by 
sending a coordinator message to all nodes. 

- No election is required. 

•Otherwise, if not the highest ID, an election is 
called. 



Bully Algorithm 

1. P sends an election msg to all processes with 

higher IDs than itself. P waits T seconds before 
becoming leader. 

2. If P does not receive an OK msg from a node with a 

higher ID than itself, it wins the election and sends 
a coordinator msg to all other processes. 

3. If P receives an OK msg from a node with a higher 

ID, P waits ~(T*2) seconds for that node to send a 
coordinator msg. If it does not receive this msg 
in time, it re-broadcasts the election msg. 

4. If P receives an election msg from another 
process with a lower ID it sends an OK msg back 

and starts a new election. 



Bully Algorithm Operation (1/3) 

1 

2 

3 

4 

5 

6 

Step 1: Node 6 (the leader) 

is detected as failed by  

node 2. Node 2 starts 

an election. 

1 

2 

3 

4 

5 

6 

Step 2: Nodes 3-5 respond with 

an OK msg. Node 2 now stops  

and waits for others to act. 

OK msg ELECTION msg 

Leader Timeout! 



Bully Algorithm Operation (2/3) 

1 

2 

3 

4 

5 

6 

Step 3: Nodes 3-5 all received 

election messages from 2, which has 

a lower ID, so they  each independently  

start election algorithm. 

1 

2 

3 

4 

5 

6 

Step 4: Nodes 5 and 4 send OK 

msgs to processes 3 and 4.  

Only node 5 doesn’t receive an 

OK msg.  

OK msg ELECTION msg 



Bully Algorithm Operation (3/3) 

1 

2 

3 

4 

5 

6 

Step 5: Node 5 times out waiting for an OK response. 

It now becomes the new leader and broadcasts to surviving  

processes that it is the new leader. 

COORDINATOR msg 

Timeout 

on OK msg! 



Bully Algorithm Performance 

•N processes 

 

•Worst Case: 

-  Smallest node initiates election 

-  Requires O(n*n) messages 

 

•Best Case: 

-  Eventual leader initiates election 

-  Requires (n-1) messages 



Question 

•If we run the bully algorithm between processes on 
the Internet, can there ever be a point where the 
highest number process is not the leader? 

 

 

 

•Yes! The Internet is an asynchronous system.  

- We could re-write the Bully algorithm for asynchronous 
systems. 

- But failure-detectors on the Internet are unreliable. 



Bully Algorithm for asynchronous systems 

1 

2 

3 

4 

5 

6 

Node 5’s failure detector incorrectly believes node 6 has failed, and starts an election. 

Nodes 1..4 also have failure detectors to node 6. What do processes 1..4 answer?  

What happens if only some of the processes have detected that node 6 has failed? 

Election msg 

Failure! 



Invitation Algorithm 

•Works for asynchronous systems 

- Assumes that delay can be arbitrary and that there is no 
global coordinator  

 

•The invitation algorithm classifies processes into 
groups and elects a coordinator for every group. 

 

•The invitation algorithm does not make assumptions 
about bounded response time and can work 
correctly in the presence of timing failures. 

 

 



Partitioning and the Need for Multiple Groups 

•If a network partitions, making communication 
impossible between two subsets of the processes 
within a group, it no longer makes sense to think of 
a single global coordinator. 

 

•Instead it is more appropriate to think in terms of a 
coordinator for each subgroup. 

 

•However, if our system is very large, we can assume 
the probability of it partitioning is very low 

 

•It is reasonable to assume that updates in the 
smaller partition will be lost on a merge. 

 



Agreement Protocols for Leader Selection 



•Marriage ceremony 
 
 
 

 

•Athletics 
 

 

•Aircraft take-off 
 

•Do you ...?  
I do.  
I now pronounce 
you... 

•On your marks... 
Get set... 
Go! 

•Ready to take off X? 
Check.  
Clear to take off!  
Check. 

Agreement Protocols are Everywhere 



Agreement protocol for movies 

Ready 
Ack 

 

Action 

 

Ready 

Ack 

Action 



If a majority say no the deal is off.  

Ready 

No 

Ready Ack Stop 

Ready 

No Stop 

Timeout Stop 

 

 

Timeout 



Consensus Algorithms 

•“Reaching Agreement in the  Presence of Faults” 

- Shostak, Pease, & Lamport, JACM, 1980 

 

•N nodes try to agree on a value, even if F of the 
nodes have failed. 

- When F=0 (no fault-tolerance) == 2PC 

 

•Properties of consensus algorithms 
- Any value decided is a value proposed  

- No two correct nodes decide differently  

- Every correct node eventually decides 

- A node decides at most once 



Paxos Commit 

•N resource managers RMs (participants) 

•2F+1 acceptors (~2F+1 TMs) 

•If F+1 acceptors see all RMs prepared,  
then the transaction is committed. 

•Protocol Cost: 2F(N+1) + 3N + 1 messages 
5 message delays  
2 stable write delays.  

37 

Client 
    
   TM RM1…N 

Acceptors 

0…2F 



• 3N+ 2F(N+1) +1 messages 

• N+2F+1 stable writes 

• 5 message delays 

• 2 stable-write delays 

 

Paxos Commit 



Quorum voting for leader election 



Leader Election as Quorum Decision 

If A is yes && B is yes 

    result = “new leader” 

else 

    result = “abort” 

B updates leader upon 

receiving “new leader” 

Leader  Candidate  

(LC) 

Node A Node B 

I think  

I am leader 

result 

am I leader? 

am I leader? 

b = yes/no 

a = yes/no 

result + join group 

result + join group 



Practical Issues to consider 

•Which node initiates the LC protocol? 

- Under what conditions does a node start the LC protocol? 

 

•What about timeouts? 

- LC times out waiting for A (or B)’s “yes/no” response 

- A times out waiting for LC’s result message 

 

•How do we decide on the election group members? 

- What happens if a node dies – will the election group 
members be changed? 

- How do we reach agreement on the election group 
members? 



Handling Leader Failure 

•Heartbeats should be used by nodes to identify if the 
leader fails. 

•Heartbeats should be used by the leader to identify 
if members of the election group fail. 

•Nodes in the election group should reach agreement 
that the leader has failed. 

- A majority will suffice – but they have to inform all 
members of the election group. 

 



Main challenges 

•What happens if a new node with an even higher 
utility than the leader joins the system? 

 

•Should it run the leader election algorithm 
immediately when it joins the system or wait until it 
has converged in the Gradient? 



Failure Detectors 

•Simple failure detector for leader failure 

- Periodically sent a heartbeat message to the leader. 

- Start a timeout based on the worst case msg round trip. 

- If the timeout expires, then suspect the leader has failed. 

• Inform all nodes about the suspected leader failure 

- If the heartbeat response is recvd from a suspected leader, 
remove the suspicion and increase time-out. 



Leader Selection for Large-Scale Dist. Sys. 



Leader Selection 

•In a large-scale distributed system, it is too costly to 
run election algorithms over all processes. 

- Takes too long to elect a new leader. 

- Generates too much network traffic. 

 

•We want to weaken the properties of the leader 
election algorithm to enable it to scale to large-scale 
distributed systems. 



Leader Selection Properties 

•When a leader election algorithm is executed, all 
nodes in the system reach agreement on a single 
leader node. All nodes know who the new leader is. 

•When a leader selection algorithm is executed, all 
nodes in the system reach agreement that a single 
node has become the leader.  

•Only a (small) subset of nodes may actually know 
who the leader is at any given time instant. 

•Any node in the system can discover who the leader 
is in reasonable time. 



Leader Selection Properties 

•Safety: Only max 1 node at a time is a leader, with 
high probability. 

 

•Liveness: Eventually, there will be a leader in the 
system. 

 

•Discovery: Nodes can discover who the leader is in 
a short bounded period of time without generating 
an excessive number of messages. 

 



Distributed Ranking with Overlay Networks 



Distributed Ranking using Overlay Networks 

•We would like a distributed algorithm for 
constructing an overlay network that orders nodes 
by some ranking function. 

 

•Static global knowledge  

- Structured overlay networks that have a regular node 
labeling scheme could be used to select a leader.  

 

•Preference-based 

- T-MAN 

- Gradient overlay network 



•We could use a well-known  
position in the ring to  
identify the leader 

-O(log N) search-time to  
find the leader. 

- Liveness property satisfied. 

-Safety property violated. 

• Failure detectors in ring-based SONs mean that more 
than 1 node may be identified as the leader at any 
point in time. 

• To get SONs to work for leader selection, you have to 
reach strong agreement on membership, as done in 
Scatter [Scatter, SOSP 2011]. 

Ring-based Structured Overlay Networks 

0 

4 

2 6 

5 

1 

3 

7 



T-MAN 

•T-man is a gossip-based protocol framework that 
can construct an overlay network using a preference 
function 

- The preference function orders any set of nodes according 
to their desirability to be neighbors of a given node 

•It’s only a framework 

- You have to decide what the preference function is, and 
then discover what type of topology the preference function 
constructs, and then analyze its properties, etc. 

- For example, in “Ordered slicing of very large-scale overlay 
networks”, Jelasity orders nodes into groups, but the 
search-time to find the leader is O(N). 



Gradient Overlay Network 

•App-specific utility 
function at every node. 

•Nodes gossip to 
preferentially connect to 
nodes with higher utility 
values as close as 
possible to their own 
utility value. 

•Built by sampling from a 
peer sampling service 
- E.g., Cyclon 

•Eventual convergence 
proved [Terelius ‘11] 



Preference Function in the Gradient 

•Peer p prefers neighbour a over neighbour b if and 
only if 
 
 
 
or 
 
 
 
 
where U

p
(a) and U

p
(b) are p's cached utility values 

for neighbours a and b. U(p) is not the cached but 
the actual utility value of p, as it is local. 

 

 
         pU<bUpU>aU pp 

         pUbU<pUaU pp 



Preference Function in the Gradient (1/3) 

A 

B 

P 

higher 

utility 

value 

lower 

utility 

value 

P’s 

utility 

value 

Up(B) < U(P) < Up(A) 

 

 => Prefer A 



Preference Function in the Gradient (2/3) 

B 

A 

P 

higher 

utility 

value 

lower 

utility 

value 

P’s 

utility 

value 

U(P) < Up(A) < Up(B) 

 

 => Prefer A 



Preference Function in the Gradient (3/3) 

B 

A 

P 

higher 

utility 

value 

lower 

utility 

value 

P’s 

utility 

value 

Up(A) < Up(B) < U(P) 

 

 => Prefer B 



Gradient Overlay Network Example 



Similar Set: Neighbour Exchange & Merging 

p a 

a 

r 

q 

m 

l 

p 

b 

c 

d 

(33,25) 

(19,03) 

(55,12) 

(09,15) 

 (31,04)‏

 ‏(17,28)

 ‏(22,27)

 ‏(28,19)

 ‏(15,27)

(U,TS)‏ ID 

(33,25) 

(19,33) 

(55,12) 

(09,15) 

 (31,04)‏

 ‏(17,28)

 ‏(22,27)

 ‏(28,19)

 ‏(15,27)

1. Peers P selects a similar Neighbour using the Preference Function. 

 
2. Peer P retrieves the similar set from Neighbour a and merges the 

received set by preserving most recent values in the cache by timestamps.  

p 

j 

g 

d 

v 

a 

b 

c 

d 

 (‏19,33)

 ‏(04,25)

 ‏(08,14)

 ‏(12,16)

 ‏(05,11)

 ‏(35,23)

 ‏(22,31)

 ‏(28,15)

 ‏(12,16)

(U,TS)   ID 

 ‏(19,34)

 ‏(04,25)

 ‏(08,14)

 ‏(12,16)

(05,11 

 ‏(33,25)

 ‏(22,31)

 ‏(28,19)

 ‏(15,27)

Similar Set 

Random Set 



SelectPeer 

•When you select a peer to perform neighbour 
exchange with, choose better peers with higher 
probability using the Gradient preference function. 

- This will make the topology converge quickly. 

•Selecting better neighbours with higher probability 
can be done using something like the Boltzmann 
distribution (softmax action selection) 

- A temperature parameter, T, controls the level of 
exploration versus the level of exploitation. 



Gradient Issues for Leader Selection 

•You could use a globally unique identifier as the 
node’s utility value 

- Nodes would be ordered in the Gradient by their ID 

 

•Almost sure convergence 

- Given a few gossiping cycles, the node with the highest 
utility value should be at the centre of the Gradient. 

- Assuming no communication failure and no message loss. 

 

•Need to decide on the group of nodes that run the 
leader election protocol. 



Leader Election Group 

•Let the node that believes it has the highest utility 
value start the protocol and define the set of nodes 
that run the leader election protocol. 

•What happens if there is more than one node that 
believes it has the highest utility value? 

•Try to ensure that that the node that believes it has 
the highest utility value, actually has the highest 
utility value! 

•What happens if the neighbours of the highest utility 
node in the Gradient change? 

- Do we update the election group? 



Broadcast using a Leader 



Push-Based Information Dissemination 

•One node wants to disseminate some messages to 
all nodes 

•Every node does the following: 

- Buffers every message it receives up to a certain buffer 
capacity b  

- Forwards the message each time to f neighbours, f called 
the fanout of the dissemination 

- Neighbours can be selected for forwarding using 

1. Random policy 

2. Gradient descent policy (forward only to neighbours with lower 
utility values) 

 



Pull-Based Information Dissemination 

•One node wants to disseminate to all nodes 
messages that are ordered sequentially by identifiers 

•Every node does the following: 

- keeps the id of the latest message it received. 

- Buffers every message it receives up to a certain buffer 
capacity b  

- periodically pulls new messages with ids higher than its 
current id from a neighbour selecting using a policy P 

• E.g., the policy could be a Gradient ascent policy would be to select a 
neighbour with a higher utility value. 

- replies to any node that requests new messages higher 
than a given id with those messages in its buffer b with ids 
higher than the given id 



References 

•Elections in a Distributed Computing System, H. Garcia-
Molina, 1981. 

•Distributed Systems , Tenenbaum and van Sten, 2008. 
•A Leader Election Algorithm in a Distributed Computing 
System, Tai Woo Kimo, Eui Hong Kim, Joong Kwon Kim 
,Korea Institute of Science and Technology, 1995. 

•Jelasity et al. ”T-Man: Gossip-based Overlay Topology 
Management”, 2007. 

•Leader Election in Asynchronous Distributed Systems, Scott 
D. Stoller, 1999. 

•Exploiting Heterogeneity in Peer-to-Peer Systems using 
Gradient Topologies, Jan Sacha, 2009 

•Converging an Overlay network to a Gradient Topology, 
Terelius et al., 2011 

• Paxos Commit. Jim Gray. Leslie Lamport, 2004. 


