ID2210 - Distributed Computing,
Peer-to-Peer and GRIDS

Lecture 6
Content Distribution and BitTorrent

[Based on slides by Cosmin Arad]

Today

The problem of content distribution
A popular solution: BitTorrent
Underlying incentive scheme

How BitTorrent works in detail

Discussion on BitTorrent extensions

The problem

* The distribution of a large piece of static
content, from a limited source, to a very large
number of users, as fast as possible.

* Providing the necessary upload bandwidth at
the source is expensive

e Solutions?

The solution idea

* Use the upload capacity of the downloaders

* Create opportunities for data exchange
between downloaders.

Two important aspects

e Peer selection

— How peers choose other peers to exchange data
with

* Pjece selection
— How peers choose the data to be exchanged

BitTorrent

e Successful system
— More than 70 client implementations!

— Mainline
* More than 40 million downloads in 2006

— Azureus
* More than 70M downloads in 2009 Q1 and 160M in 2008

* Considers practical issues
— TCP slow start
— TCP congestion control

BitTorrent in 2011

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

2009

Peak Period Aggregate Traffic Composition
(North America, Fixed Access)

B OutsideTop 5
M Secure Tunneling
I Gaming
Social Networking
Bulk Entertainment
B Real-Time Communications
m Web Browsing
[P2P Filesharing

M Real-Time Entertainment

2010 March, 2011 sandvine

Intelligent Broadband Netwarks

BitTorrent in 2011

Table 1 - North America, Fixed Access, Peak Period, Top Applications by Bytes

Upstream Downstream Aggregate
Application Share Application Share Application Share

1 BitTorrent | 52.01% Netflix | 29.70% Netflix | 24.71%
2 HTTP| 8.31% HTTP | 18.36% BitTorrent | 17.23%
3 Skype | 3.81% YouTube | 11.04% HTTP | 17.18%
4 Netflix 3.59% BitTorrent | 10.37% YouTube 9.85%
5 PPStream | 2.92%| Flash Video| 4.88%| Flash Video 3.62%
6 MGCP | 2.89% iTunes 3.25% iTunes 3.01%
7 RTP| 2.85% RTMP | 2.92% RTMP | 2.46%
8 SSL| 2.75% Facebook 1.91% Facebook 1.86%
9 Gnutella| 2.12% SSL| 1.43% SSL| 1.68%
10 Facebook | 2.00% Hulu 1.09% Skype 1.29%
Top 10| 83.25% Top 10 | 84.95% Top 10 | 82.89%

L] .
SOURCE: SAMDVIME METWORK DEMOGRAPHICS E“J sa ndVI ne
vy

BitTorrent in 2011

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

2009

Peak Period Aggregate Traffic Composition
(Europe, Fixed Access)

B QutsideTop 5
News Groups

B Secure Tunneling

I Gaming

W Storage and Back-Up Services

B Real-Time Communications
Bulk Entertainment

B Web Browsing

m P2P Filesharing

B Real-Time Entertainment

2010 March, 2011 Msandvine

Intelligent Broadband Netwarks

BitTorrent in 2011

Table 6 - Europe, Fixed Access, Peak Period, Top Applications by Bytes

A

Upstream

Downstream

Aggregate

Application Share Application Share Application

1 BitTorrent | 59.68% BitTorrent | 21.63% BitTorrent | 28.40%
2 Skype 7.16% HTTP | 20.47% HTTP| 18.08%
3 HTTP 7.02% YouTube | 14.13% YouTube | 11.93%
4 PPStream 3.64% RTMP 4.58% RTMP 3.90%
5 Spotify 2.91% Flash Video 3.99% Flash Video 3.38%
6 SSL 2.66% iTunes 3.65% SSL| 3.09%
7 eDonkey 1.76% SSL 3.18% iTunes 3.07%
8 YouTube 1.76% NNTP 2.73% Skype 2.44%
9 Facebook 1.42% Facebook 1.71% NNTP 2.30%
10 Teredo 1.18% Skype 1.42% PPStream 1.77%

Top 10| 89.19% Top 10 | 77.49% Top 10| 78.36%

SOURCE: SAMDVINE NETWORK DEMOGRAPHICS

>Isandvine

BitTorrent strategy

Fact: Total download = total upload

Try to make the download rate proportional to
the upload rate for each peer

— Helps to avoid free riders

Create a random graph between peers
— Good robustness
“The BitTorrent file distribution system uses

tit-for-tat as a method of seeking Pareto
efficiency.”

Tit for Tat

* Best deterministic strategy for the Iterated
Prisoner’s Dilemma

— Unless provoked, the agent will always cooperate
— If provoked, the agent will retaliate
— The agent is quick to forgive

— The agent must have a good chance of competing
against the opponent more than once.

http://en.wikipedia.org/wiki/Tit_for_tat

Pieces and Blocks

e Content is split into pieces (256KB-2MB)
* Pieces are split into blocks (16KB)

Content

‘ Piece 1 ‘ ‘ Piece n

BitTorrent terminology

A peer who has all the pieces is called a seed

A peer who does not have all the pieces is
called a leecher

A tracker keeps track of all peers in the swarm

A torrent file contains swarm metadata:

— Tracker address, the piece size, the # of pieces, a
hash of each piece, the file(s) name and size

Publishing content

Split content into pieces, compute hashes for
each piece, and create a meta-data torrent file

Register the torrent with a tracker
Start the BitTorrent client acting as seed

Publish the torrent file on a web server or using a
decentralized tracker

torrent file

Encoded using bencoding
Info key

— Length on the content in bytes
— File Name

— Piece length

— SHA-1 hashes for all pieces

Announce URL of the tracker (HTTP)

Some optional fields
— Creation date, comment, created by

Joining a swarm

Downloaders find the meta-data torrent file

Retrieve from the tracker a list of peers who
are already in the swarm (50 random peers)

Tracker is centralized but it is not involved in
data transfer

The tracker only keeps track of the peers
currently involved in the torrent

Neighbor peers

Peer registers with the tracker after join and
every 30 minutes sends its state to the tracker

Each peer has a neighbor set of other peers
— Initially retrieved from the tracker
— Maximum size of the neighbor set is 80

Peer keeps open TCP connections to the peers in
its neighbor set

— If |neighbors| < 20 ask tracker for more peers

— Peer initiated a maximum of 40 connections

— Rest of 40 are connection accepted from other peers

Peer-to-Peer data transfer

* Peers exchange blocks of content with
neighbor peers over TCP connections

* Pipelining: to avoid TCP’s “slow start” delay,
5 block requests are kept active at once
— “This is the most crucial performance item”

e At all times, a peer uploads data to no more
than 4 neighbor peers, its active neighbor set

— “This allows TCP’s built-in congestion control to
reliably saturate upload capacity.”

Piece information

* After establishing a connection, peers shake
hands and exchange their piece bitfields

* After the bitfield exchange both peers know what
pieces the other peer has

— Peer A is interested in peer B if peer B has pieces that
peer A does not have

— Peer A is not interested in peer B if peer B has a subset
of the pieces that peer A has

* When a peer acquires a new piece it tells all its
neighbors by sending them a HAVE message

Peer connections

* To avoid the cost of handshaking and bitfield
exchange, peers keep the connections open

* Keep-alive messages are sent every 2 minutes

* A neighbor peer is either choked or unchoked
— am_choking: this client is choking the peer
— am_interested: this client is interested in the peer
— peer_choking: peer is choking this client
— peer_interested: peer is interested in this client

Peer (un)choking

Unchoked peers form the active neighbor set

The active neighbor set is updated periodically
and determined by the choke algorithm

The choke algorithm selects the neighbors to
which the local peer uploads (peer selection)
Two versions

— Leecher choke algorithm
— Seeder choke algorithm

Leecher Choke Algorithm

Runs periodically every 10 seconds

Also runs when a peer leaves the neighbor set
or when an unchoked peer becomes
interested or not interested

We call each run of the algorithm a round

Step 1: every 3 rounds a random neighbor
that is choked and interested is selected as
the planned optimistic unchoked peer (POU)

Leecher Choke Algorithm

e Step 2: Sort all interested peers that have
uploaded at least 1 block in the last 30s, by
their current upload rate to the local peer

— Exclude snubbed peers, the ones who didn’t
upload anything in the last 30 seconds

— The current upload rate of the peer is computed a
rolling average over the last 20 seconds

e Step 3: The three fastest peers are unchoked
— We call these the regular unchoked (RU) peers

Leecher Choke Algorithm

e Step 4: If the POU peer is not one of the RU
peers, it is unchoked and the round completes

e Step 5: Else, another peer is chosen at random
to be the POU peer

— 5a: If this POU peer is interested, it is unchoked
and the round completes

— 5b: Else, the POU peer is unchoked and a new
POU peer is selected at random. Step 5ais
repeated with the new POU peer

Leecher Choke Algorithm

In one round 4 interested peers are unchoked
More than 4 peers (uninterested) are unchoked

As soon as one of these unchoked peers
becomes interested, a new round runs

Optimistic unchoking (steps 4 and 5a)

— Finds potentially faster peers

— Allows new peers with no pieces to bootstrap, by
giving them their first piece

Seeder Choke Algorithm

* Old version similar to the leecher version but
sorting peers (step 2) by their download rate

— Problematic since high download leechers can
monopolize seeds

* New version
— Runs periodically every 10 seconds

— Also runs also when a peer leaves the neighbor
set, and when an unchoked peer becomes
interested or not interested

— We call each run of the algorithm a round

New Seeder Choke Algorithm

e Step 1: All interested peers that were unchoked in
the last 20 seconds or that have pending block
requests are sorted by the time they were last
unchoked (most recent first)

* On atie, priority is given to the peers with the
highest download rate (from this peer)

e Step 2: All other peers are sorted by their
download rate (from this peer) and concatenated
to the sorted peer list from step 1

New Seeder Choke Algorithm

Step 3: during 2/3 rounds the first three peers
are kept unchoked and one other random
interested peer is also unchoked

Every third round, the first four peers are kept
unchoked

As a consequence of step 1 the peers in the
active neighbor set are rotated frequently

A seed thus uniformly divides its upload
capacity to all its peers

Anti-snubbing

When over a minute has gone by without receiving
a single sub-piece from a particular peer, do not
upload to it except as an optimistic unchoke

A peer is said to be snubbed if all its peers choke it

To handle this, a snubbed peer stops uploading to
Its peers

Download will lag until optimistic unchoke finds
petter peers

ncrease the number of optimistic unchokes

— Hope that will discover a new peer that will upload to us

Piece selection strategies

Strict Priority

— Other blocks from same source

Rarest First

— Common parts left for later
Random First Piece

— Start-up need to get a complete piece

Endgame Mode
— Broadcast for all remaining blocks

Strict priority

* Once a block has been requested from a
piece, the remaining blocks of the same piece
are requested with highest priority

* Get complete pieces as soon as possible

* Important to minimize the number of partially
received pieces, since only complete pieces
can be uploaded to other peers

Rarest-first

* A peer knows what pieces its neighbors have

 Can compute local availability for each piece

— How many times the piece is available on the peers in
the neighbor set

* Assume the minimum local availability among all
pieces is m

— The rarest-pieces set is the set of all pieces with local
availability m

— The rarest-pieces set is updated every time the peer
receives a HAVE or a BITFIELD message

Rarest-first

* A random piece is selected from the rarest-
pieces set

— Randomization avoid many peers in the same
neighborhood crowding on the same piece

e Rarest-first aims to maximize the entropy of
the pieces in the torrent
— Peers get the pieces that their neighbors will need
— Different pieces are downloaded from seeds

— Prolongs the life a torrent by reducing the risk that
a piece becomes extinct

Random first-piece

Used in the beginning of the download,
oefore having received 4 complete pieces

Pieces are selected at random and different
olocks can be requested from different peers

Get complete pieces as soon as possible

Important to have some pieces to reciprocate
for the choke algorithm.

End-game mode

* Piece selection strategy adopter at the very
end of the download

— once all remaining blocks were requested

* All remaining blocks are requested from all
peers in the neighbor set

* Once a block is received, a CANCEL message is
sent to all peers

Study results

* Very low protocol overhead (< 2%)

* Choke algorithm

— gives a fair chance to each peer to be served by a
given peer

— achieves a reasonable reciprocation with respect
to the amount of data exchanged between
leechers

— Seeder algorithm evenly shares the capacity
offered by a seed among all candidate leechers

[Legout et al., INRIA-TR-2006]

Study results

e Rarest-first piece selection strategy
consistently increases with time the diversity

(entropy) of the pieces in the peer set

* The last pieces problem is overstated whereas
the first pieces problem is underestimated

[Legout et al., INRIA-TR-2006]

Correlation Download, Upload, and Unchoke

& 100
=
-
=
D |
= 40
100 .
(WA
=
-
:} |
40
.-'—-'\-\.2
@
L
I . .
I_I::] L - -
0 10 20 30 40

Ordered Peer |ID

Unchokes in Seed State

n
(-
(-

SRU

=
L
l:.'l

C
-
l.‘:.l

200¢

NMumber of Unchokes

’1DD

DD

CDF

Block Interarrival Time

PH---100 first

- {Z"All blocks|

e
1

il 100 last |

10"

10

CDF

FPiece Interarrival Time

T Aipeces

SR 100 first

AN - 100 last

10

10

Num. of messages

Number of Messages per Type

1S KA C UC

NI

H BF R P CA

KBytes

10 e THEEEEECEEEEECEEE T
= Sent SRR e
1 05| IlReceived|
N
1d HS KA C NI

Bytes per Type of Messages

L R R R P

H BF R P CA

BitTorrent Extensions

e Distributed tracker
* Peer-exchange

 Multiple trackers

Summary of issues

Peer discovery

— Central tracker, distributed tracker, peer-exchange

Data discovery
— Exchanged by peers

Peer selection
— Choke algorithms ¥

Piece selection
— Rarest-first

Applications of BitTorrent

* A BitTorrent-based file transfer protocol

e Twitter uses Murder to update the software
running on Twitter servers

— 75x faster

— http://engineering.twitter.com/2010/07/murder-fast-datacenter-
code-deploys.html

http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html

Murder

Centralized software
updates using Git

1 Git Server

/ /7 , U
¥ i 4
p: 4 e r
J F F 4 # .
" 7 o "4
| A 4 &
P g
I nd e
u'(' >
Yy -"‘
’
7’ 5
‘ ot
> -
.
.,
—

Thousands of Servers

Credit: Larry Gadea

58

Decentralized software
updates using Murder

Murder Performance

Before (git) After (Murder)

| Credit: Larry Gadea |

59

Applications of BitTorrent

e P2P Video-on-Demand

— P2P-Next used by Wikipedia is based on a modified
BitTorrent called Swift.

e http://www.libswift.org/

— Problems:

* Piece sizes of 512KB are too large, resulting in delays in
downloading the first pieces for playback.

— However, decreasing pieces sizes linearly increases the amount of
advertising overhead in BitTorrent...

* In-order piece selection instead of rarest-piece selection

— What are the implications for the overlay topology?

http://www.libswift.org/

Future of BitTorrent

e Move from TCP to UDP

— Reliable and in-order delivery not critical
— TCP has a high per-connection memory footprint
* Prevents large numbers of connections to peers

— TCP is very poor at NAT traversal

— Congestion control in TCP means that your OS
treats BitTorrent’s TCP connections as equally as
important as your Browser or Email client’s single
TCP connection

e uTorrent has moved from TCP to Ledbat/UDP

TCP and uTP usage

BitTorrent Composition
(North America, Fixed Access Networks)

M BitTorrent (regular)
36.4%

BitTorrent (uTP) m
38.6%

BitTorrent (UDP) m m BitTorrent (encrypted)
8.2% 16.8%

Credit: sandvine 2011

Arnaud Legout © 2006-2012 62

Reducing Inter-ISP Traffic

* |SPs have high costs for P2P traffic

— BitTorrent does not take into account the cost of
sending packets to peers in different ISPs

— ISPs have resorted to blocking and shaping P2P traffic

* Most ISPs are stub Autonomous Systems (AS)
with a Transit AS link and maybe some peering AS
links

— Would like to bias BitTorrent traffic to reduce the
amount sent over costly transit AS links.

— Trade-off with user experience, as this may increase
download times.

References

 Basic BitTorrent mechanisms
[Cohen, P2PECON’03]

* BitTorrent specification Wiki
http://wiki.theory.org/BitTorrentSpecification

e Measurement studies

zal et al., PAM’04],

Pouwelse et al., Delft TR 2004 and IPTPS’05],
‘Guo etal.,, IMC’05], and

Legout et al., INRIA-TR-2006]

References

Theoretical analysis and modeling
[Qiu et al., SIGCOMM’04], and
[Tian et al., Infocom’06]

Simulations
Bharambe et al., MSR-TR-2005]

ncentives and exploiting them
Shneidman et al., PINS'04],
Jun et al., P2PECON’05], and
Liogkas et al., IPTPS’06]

Sandvine. “Global Internet Phenomena Report”,
Spring 2011.

