
Lecture 6
Content Distribution and BitTorrent

[Based on slides by Cosmin Arad]

ID2210 - Distributed Computing,
Peer-to-Peer and GRIDS

Today

• The problem of content distribution

• A popular solution: BitTorrent

• Underlying incentive scheme

• How BitTorrent works in detail

• Discussion on BitTorrent extensions

The problem

• The distribution of a large piece of static
content, from a limited source, to a very large
number of users, as fast as possible.

• Providing the necessary upload bandwidth at
the source is expensive

• Solutions?

The solution idea

• Use the upload capacity of the downloaders

• Create opportunities for data exchange
between downloaders.

Two important aspects

• Peer selection

– How peers choose other peers to exchange data
with

• Piece selection

– How peers choose the data to be exchanged

BitTorrent

• Successful system

– More than 70 client implementations!

– Mainline

• More than 40 million downloads in 2006

– Azureus

• More than 70M downloads in 2009 Q1 and 160M in 2008

• Considers practical issues

– TCP slow start

– TCP congestion control

BitTorrent in 2011

BitTorrent in 2011

BitTorrent in 2011

BitTorrent in 2011

BitTorrent strategy

• Fact: Total download = total upload

• Try to make the download rate proportional to
the upload rate for each peer
– Helps to avoid free riders

• Create a random graph between peers
– Good robustness

• “The BitTorrent file distribution system uses
tit-for-tat as a method of seeking Pareto
efficiency.”

Tit for Tat

• Best deterministic strategy for the Iterated
Prisoner’s Dilemma

– Unless provoked, the agent will always cooperate

– If provoked, the agent will retaliate

– The agent is quick to forgive

– The agent must have a good chance of competing
against the opponent more than once.

http://en.wikipedia.org/wiki/Tit_for_tat

Pieces and Blocks

• Content is split into pieces (256KB-2MB)

• Pieces are split into blocks (16KB)

Piece 1 Piece n

Content

Block 1 Block k

BitTorrent terminology

• A peer who has all the pieces is called a seed

• A peer who does not have all the pieces is
called a leecher

• A tracker keeps track of all peers in the swarm

• A torrent file contains swarm metadata:

– Tracker address, the piece size, the # of pieces, a
hash of each piece, the file(s) name and size

Publishing content

• Split content into pieces, compute hashes for
each piece, and create a meta-data torrent file

• Register the torrent with a tracker

• Start the BitTorrent client acting as seed

• Publish the torrent file on a web server or using a
decentralized tracker

.torrent file

• Encoded using bencoding

• Info key
– Length on the content in bytes

– File Name

– Piece length

– SHA-1 hashes for all pieces

• Announce URL of the tracker (HTTP)

• Some optional fields
– Creation date, comment, created by

Joining a swarm

• Downloaders find the meta-data torrent file

• Retrieve from the tracker a list of peers who
are already in the swarm (50 random peers)

• Tracker is centralized but it is not involved in
data transfer

• The tracker only keeps track of the peers
currently involved in the torrent

Neighbor peers

• Peer registers with the tracker after join and
every 30 minutes sends its state to the tracker

• Each peer has a neighbor set of other peers

– Initially retrieved from the tracker

– Maximum size of the neighbor set is 80

• Peer keeps open TCP connections to the peers in
its neighbor set

– If |neighbors| < 20 ask tracker for more peers

– Peer initiated a maximum of 40 connections

– Rest of 40 are connection accepted from other peers

Peer-to-Peer data transfer

• Peers exchange blocks of content with
neighbor peers over TCP connections

• Pipelining: to avoid TCP’s “slow start” delay,
5 block requests are kept active at once

– “This is the most crucial performance item”

• At all times, a peer uploads data to no more
than 4 neighbor peers, its active neighbor set

– “This allows TCP’s built-in congestion control to
reliably saturate upload capacity.”

Piece information

• After establishing a connection, peers shake
hands and exchange their piece bitfields

• After the bitfield exchange both peers know what
pieces the other peer has

– Peer A is interested in peer B if peer B has pieces that
peer A does not have

– Peer A is not interested in peer B if peer B has a subset
of the pieces that peer A has

• When a peer acquires a new piece it tells all its
neighbors by sending them a HAVE message

Peer connections

• To avoid the cost of handshaking and bitfield
exchange, peers keep the connections open

• Keep-alive messages are sent every 2 minutes

• A neighbor peer is either choked or unchoked

– am_choking: this client is choking the peer

– am_interested: this client is interested in the peer

– peer_choking: peer is choking this client

– peer_interested: peer is interested in this client

Peer (un)choking

• Unchoked peers form the active neighbor set

• The active neighbor set is updated periodically
and determined by the choke algorithm

• The choke algorithm selects the neighbors to
which the local peer uploads (peer selection)

• Two versions

– Leecher choke algorithm

– Seeder choke algorithm

Leecher Choke Algorithm

• Runs periodically every 10 seconds

• Also runs when a peer leaves the neighbor set
or when an unchoked peer becomes
interested or not interested

• We call each run of the algorithm a round

• Step 1: every 3 rounds a random neighbor
that is choked and interested is selected as
the planned optimistic unchoked peer (POU)

Leecher Choke Algorithm

• Step 2: Sort all interested peers that have
uploaded at least 1 block in the last 30s, by
their current upload rate to the local peer

– Exclude snubbed peers, the ones who didn’t
upload anything in the last 30 seconds

– The current upload rate of the peer is computed a
rolling average over the last 20 seconds

• Step 3: The three fastest peers are unchoked

– We call these the regular unchoked (RU) peers

Leecher Choke Algorithm

• Step 4: If the POU peer is not one of the RU
peers, it is unchoked and the round completes

• Step 5: Else, another peer is chosen at random
to be the POU peer

– 5a: If this POU peer is interested, it is unchoked
and the round completes

– 5b: Else, the POU peer is unchoked and a new
POU peer is selected at random. Step 5a is
repeated with the new POU peer

Leecher Choke Algorithm

• In one round 4 interested peers are unchoked

• More than 4 peers (uninterested) are unchoked

• As soon as one of these unchoked peers
becomes interested, a new round runs

• Optimistic unchoking (steps 4 and 5a)

– Finds potentially faster peers

– Allows new peers with no pieces to bootstrap, by
giving them their first piece

Seeder Choke Algorithm

• Old version similar to the leecher version but
sorting peers (step 2) by their download rate

– Problematic since high download leechers can
monopolize seeds

• New version

– Runs periodically every 10 seconds

– Also runs also when a peer leaves the neighbor
set, and when an unchoked peer becomes
interested or not interested

– We call each run of the algorithm a round

New Seeder Choke Algorithm

• Step 1: All interested peers that were unchoked in
the last 20 seconds or that have pending block
requests are sorted by the time they were last
unchoked (most recent first)

• On a tie, priority is given to the peers with the
highest download rate (from this peer)

• Step 2: All other peers are sorted by their
download rate (from this peer) and concatenated
to the sorted peer list from step 1

New Seeder Choke Algorithm

• Step 3: during 2/3 rounds the first three peers
are kept unchoked and one other random
interested peer is also unchoked

• Every third round, the first four peers are kept
unchoked

• As a consequence of step 1 the peers in the
active neighbor set are rotated frequently

• A seed thus uniformly divides its upload
capacity to all its peers

Anti-snubbing

• When over a minute has gone by without receiving
a single sub-piece from a particular peer, do not
upload to it except as an optimistic unchoke

• A peer is said to be snubbed if all its peers choke it

• To handle this, a snubbed peer stops uploading to
its peers

• Download will lag until optimistic unchoke finds
better peers

• Increase the number of optimistic unchokes

– Hope that will discover a new peer that will upload to us

Piece selection strategies

• Strict Priority

– Other blocks from same source

• Rarest First

– Common parts left for later

• Random First Piece

– Start-up need to get a complete piece

• Endgame Mode

– Broadcast for all remaining blocks

Strict priority

• Once a block has been requested from a
piece, the remaining blocks of the same piece
are requested with highest priority

• Get complete pieces as soon as possible

• Important to minimize the number of partially
received pieces, since only complete pieces
can be uploaded to other peers

Rarest-first

• A peer knows what pieces its neighbors have

• Can compute local availability for each piece
– How many times the piece is available on the peers in

the neighbor set

• Assume the minimum local availability among all
pieces is m
– The rarest-pieces set is the set of all pieces with local

availability m

– The rarest-pieces set is updated every time the peer
receives a HAVE or a BITFIELD message

Rarest-first

• A random piece is selected from the rarest-
pieces set
– Randomization avoid many peers in the same

neighborhood crowding on the same piece

• Rarest-first aims to maximize the entropy of
the pieces in the torrent
– Peers get the pieces that their neighbors will need

– Different pieces are downloaded from seeds

– Prolongs the life a torrent by reducing the risk that
a piece becomes extinct

Random first-piece

• Used in the beginning of the download,
before having received 4 complete pieces

• Pieces are selected at random and different
blocks can be requested from different peers

• Get complete pieces as soon as possible

• Important to have some pieces to reciprocate
for the choke algorithm.

End-game mode

• Piece selection strategy adopter at the very
end of the download

– once all remaining blocks were requested

• All remaining blocks are requested from all
peers in the neighbor set

• Once a block is received, a CANCEL message is
sent to all peers

Study results

• Very low protocol overhead (< 2%)

• Choke algorithm
– gives a fair chance to each peer to be served by a

given peer

– achieves a reasonable reciprocation with respect
to the amount of data exchanged between
leechers

– Seeder algorithm evenly shares the capacity
offered by a seed among all candidate leechers

[Legout et al., INRIA-TR-2006]

Study results

• Rarest-first piece selection strategy
consistently increases with time the diversity
(entropy) of the pieces in the peer set

• The last pieces problem is overstated whereas
the first pieces problem is underestimated

 [Legout et al., INRIA-TR-2006]

BitTorrent Extensions

• Distributed tracker

• Peer-exchange

• Multiple trackers

Summary of issues

• Peer discovery

– Central tracker, distributed tracker, peer-exchange

• Data discovery

– Exchanged by peers

• Peer selection

– Choke algorithms

• Piece selection

– Rarest-first

Applications of BitTorrent

• A BitTorrent-based file transfer protocol

• Twitter uses Murder to update the software
running on Twitter servers

– 75x faster
– http://engineering.twitter.com/2010/07/murder-fast-datacenter-

code-deploys.html

http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html
http://engineering.twitter.com/2010/07/murder-fast-datacenter-code-deploys.html

Decentralized software
updates using Murder

Murder

Centralized software
updates using Git

Credit: Larry Gadea

58

Murder Performance

Credit: Larry Gadea

59

Applications of BitTorrent

• P2P Video-on-Demand

– P2P-Next used by Wikipedia is based on a modified
BitTorrent called Swift.

• http://www.libswift.org/

– Problems:

• Piece sizes of 512KB are too large, resulting in delays in
downloading the first pieces for playback.

– However, decreasing pieces sizes linearly increases the amount of
advertising overhead in BitTorrent...

• In-order piece selection instead of rarest-piece selection

– What are the implications for the overlay topology?

http://www.libswift.org/

Future of BitTorrent

• Move from TCP to UDP
– Reliable and in-order delivery not critical

– TCP has a high per-connection memory footprint
• Prevents large numbers of connections to peers

– TCP is very poor at NAT traversal

– Congestion control in TCP means that your OS
treats BitTorrent’s TCP connections as equally as
important as your Browser or Email client’s single
TCP connection

• uTorrent has moved from TCP to Ledbat/UDP

TCP and uTP usage

Credit: sandvine 2011

Arnaud Legout © 2006-2012 62

Reducing Inter-ISP Traffic

• ISPs have high costs for P2P traffic
– BitTorrent does not take into account the cost of

sending packets to peers in different ISPs

– ISPs have resorted to blocking and shaping P2P traffic

• Most ISPs are stub Autonomous Systems (AS)
with a Transit AS link and maybe some peering AS
links
– Would like to bias BitTorrent traffic to reduce the

amount sent over costly transit AS links.

– Trade-off with user experience, as this may increase
download times.

References

• Basic BitTorrent mechanisms
[Cohen, P2PECON’03]

• BitTorrent specification Wiki
http://wiki.theory.org/BitTorrentSpecification

• Measurement studies
[Izal et al., PAM’04],
[Pouwelse et al., Delft TR 2004 and IPTPS’05],
[Guo et al., IMC’05], and
[Legout et al., INRIA-TR-2006]

References

• Theoretical analysis and modeling
[Qiu et al., SIGCOMM’04], and
[Tian et al., Infocom’06]

• Simulations
[Bharambe et al., MSR-TR-2005]

• Incentives and exploiting them
[Shneidman et al., PINS’04],
[Jun et al., P2PECON’05], and
[Liogkas et al., IPTPS’06]

• Sandvine. “Global Internet Phenomena Report”,
Spring 2011.

