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Development of a Navier–Stokes code as a demonstration of concepts

due 18/03/2013
Version 1.07 (21/02/2013)

1 Background

The velocity and pressure fields for an incompressible fluid can be obtained by solving the
Navier–Stokes equations numerically. Under the assumption of constant density (incompress-
ible), the non-dimensional mass and momentum conservation equations are reduced to

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂P

∂xi
+

1

Re

∂2ui
∂xj∂xj

+ fi , (2)

with ui denoting the velocity in the direction xi, P the pressure, and the Reynolds number Re.
fi is a volume force. Note that the summation convention has been used. The corresponding
transport equation for a scalar θ such as the temperature or pollutant concentration is

∂θ

∂t
+
∂(ujθ)

∂xj
=

1

Pe

∂2θ

∂xj∂xj
, (3)

with the Péclet number Pe = Pr · Re and the Prandtl number Pr. In the case of a so-called
active scalar, the Boussinesq approximation can be used to model the influence of variable
density onto the momentum equations by setting f2 = Riθ. Here, we assume that the gravity
acts in the y = x2 direction, hence the force is applied onto the second component of fi. Finally,
Ri denotes the Richardson number.

As can be seen in the above equations, the continuity equation is not an evolution equation
anymore as in the case of compressible fluids. This means that mass conservation becomes
like an additional constraint for the momentum conservation equations. This requires extra
attention when the equations are solved numerically. For time-dependent flows a common way
to solve the discrete system is the so-called projection or pressure correction method. Sometimes
this method and its generalisations are also called splitting methods. A short description of this
method is given next.

Let us discretise the above equations using an explicit scheme for time derivatives (explicit
Euler)

Un+1 − Un
∆t

+N(Un)Un +GPn+1 = f(tn) , (4)

DUn+1 = 0 , (5)

where N(U)U denotes the advection and viscous terms, GP the pressure gradient, ∆t the
time step and f(t) the forcing terms including the boundary conditions. Further, D stands for
divergence operator. Note that the pressure term is discretised using the values at the time step
n+1. The reason for this will become clear later on. Applying the projection method to the set
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of equations above, one can rewrite them as follows. First, in the prediction step an intermediate
flow field U∗ is computed which does not necessarily satisfy the continuity equation,

U∗ − Un
∆t

+N(Un)Un = f(tn) . (6)

A correction step is then introduced in order to correct for the continuity equation,

Un+1 − U∗

∆t
+GPn+1 = 0 . (7)

Applying the divergence operator D to equation (7) and using the divergence-free condition (5),
one can derive the following Poisson equation for the pressure,

DGPn+1 = ∆Pn+1 =
1

∆t
(DU∗) , (8)

using the symbol ∆ for the Laplace operator. The computed pressure from this step can be
inserted in equation (7) to obtain Un+1,

Un+1 = U∗ −∆tGPn+1 . (9)

As will be discussed later, in equation (8) homogeneous Neumann boundary conditions are
employed. Note that the pressure is only determined up to an additive constant (only pressure
derivatives enter the evolution equations). This means that the pressure must be set explicitly
in one point of the domain to avoid singular expressions.

The solution of the scalar transport equation (3) is simpler than the momentum equations, as
the scalar θ does not need to satisfy the divergence-free condition. Therefore, the integration
can be done in a straight-forward way using explicit time integration (velocity field from the
previous time step).

2 Simulation code

Your task for this project is to develop a simulation programme that can solve the Navier–Stokes
equations in a rectangular domain. This code should be written in MATLAB, based on the tem-
plates given on the course homepage and in Appendix B (SG2212 template.m, DD template.m,
avg template.m). To summarise, the features of the code are:

• Incompressible Navier–Stokes plus scalar equations (Boussinesq approximation; only for
PhD students reading course SG3114),

• Second-order finite difference on a staggered grid,

• Explicit Euler time integration for both advection and viscous terms,

• Sparse matrices for the Poisson equation for the pressure correction,

• Dirichlet and Neumann boundary conditions on a rectangular domain in two dimensions
(2D).

As this code is mainly used for educational purposes demonstrating the various concepts used
in CFD, the complexity of the numerical method is intentionally kept on a low level. Therefore,
a number of features common in CFD software are not treated in the code:
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• 3D formulation and implicit time stepping for viscous terms

• CFL condition for time stepping,

• Higher order time integration methods,

• Higher order spatial discretisation,

• more efficient solution strategies, e.g. using a Cholesky decomposition,

• More complex geometries, multiblock distributions, mappings etc.

In order to demonstrate the capabilities of your code we will consider two physical flow cases
which are introduced in the following Sections 3 and 4. A detailed description of the numerical
method and its implementation is given in the Appendix.

3 Task 1: Lid-driven cavity (all course participants)

Consider the incompressible flow in a two-dimensional rectangular domain with side length lx
and ly. The side and lower walls are all solid and still, requiring no-slip boundary conditions.
The top wall is moved with a constant speed u = 1 in the positive x-direction. This flow case
is a common test problem for Navier–Stokes solvers, and usually called the lid-driven cavity. A
sketch is given in Figure 1.
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Figure 1: Sketch of the lid-driven cavity. The moving top wall is indicated in red.

The mass and momentum conservation equations in non-dimensional form can be written as

∂u

∂x
+
∂v

∂y
= 0 , (10)

∂u

∂t
+
∂P

∂x
= −∂(u2)

∂x
− ∂(uv)

∂y
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (11)

∂v

∂t
+
∂P

∂y
= −∂(uv)

∂x
− ∂(v2)

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
, (12)
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with associated boundary conditions

x = 0 : u = v = 0 (13)

x = lx : u = v = 0 (14)

y = 0 : u = v = 0 (15)

y = ly : u = 1, v = 0. (16)

You can optionally include also the advection of a passive scalar, governed by

∂θ

∂t
= −∂(uθ)

∂x
− ∂(vθ)

∂y
+

1

Pe

(
∂2θ

∂x2
+
∂2θ

∂y2

)
, (17)

with Pe = Re · Pr. Choose Pr = 0.71 which is a good approximation for air. The boundary
conditions for the temperature θ are

x = 0 : ∂θ/∂x = 0 (adiabatic) (18)

x = lx : ∂θ/∂x = 0 (adiabatic) (19)

y = 0 : θ = 0 (20)

y = ly : θ = 1 . (21)

Initial conditions at t = 0 are non-moving fluid, i.e. u(t = 0) = v(t = 0) = 0. For the scalar,
assume a linear profile in the vertical direction, i.e. θ(t = 0) = y/ly.

Your task is to write a MATLAB code which solves the Navier–Stokes equations for the flow
case described above using the projection method on a staggered grid. The implementation
of the scalar equation is only compulsive for PhD students (course SG3114). To check your
implementation, answer Q1–Q4 and run your code for cases A–C given below.

Questions:

Q1) Discuss why the kron operator (Kronecker tensor product) as introduced in Section A.4
indeed returns the matrix for the second derivative in the two-dimensional case.

Q2) For case A (spatial discretisation as stated below) determine ”experimentally” the maxi-
mum time step ∆t that is stable for the velocity field. Can you relate that maximum time
step to the grid resolution and Reynolds number by considering stability conditions for
both convective and diffusive terms (consider a 2D problem!). Which of the two is more
strict for cases A–C?
For PhD students: Choosing Pr = 0.71, is the scalar equation less stable than the mo-
mentum equations? Why?

Q3) The boundary conditions for U on the top and bottom boundaries as well as for V on the
left and right boundaries should be imposed by choosing the correct values for the dummy
cells (cells outside the domain). Write down the expressions for Ui+ 1

2
,0 and V0,j+ 1

2
at the

dummy cells.

Also the expressions for the pressure at the dummy cells P0,j and Pi,0 should be chosen
such that the Neumann boundary condition at the boundaries is satisfied. Give the
expression for the pressure in the dummy cells and write down the discretised ∇2P1,j for
j = 2, · · · , ny − 1 (Laplace operator including boundary conditions).
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Q4) Place a probe at the domain centre to compare the time history of the horizontal velocity(u)
for the flow cases A–C given below. Try to estimate the time it takes for each run to es-
tablish a stationary solution. How does this time correlate with the Reynolds number?
As an example, the time evolution for case B is shown in Figure 5 below.

Flow cases:

A) Run the code for Re = 10, lx = ly = 1. Use a total of Nx = Ny = 30 grid cells and a time
step ∆t = 0.001.

For low values of Re, one obtains a flow field which is (nearly) symmetric in the x-direction,
see Figure 2, with very little transient behaviour.

B) Run the code for Re = 100, lx = ly = 1, Nx = Ny = 50, ∆t = 0.001.

For these moderate values of Re (≈ 100) the flow becomes asymmetric due to action of
inertia, but it is still steady, see Figures 3. This can be clearly seen by means of a time
series recorded in the middle of the domain, see Fig. 5 and Q4.

C) (optional) Run the code for Re = 8000 or even higher Re, lx = ly = 1, Nx = Ny = 100,
∆t = 0.001.

Note also that increasing the Reynolds number will give rise to thinner shear layers,
which require more grid points to properly resolve them. You can experiment with the
combinations Re, Nx, Ny and ∆t, and observe how the results (and stability) are affected
(see Q2).

You should hand in the MATLAB code and a report with answers to questions Q1–Q4 together
with a discussion and plots illustrating the flow development for the three cases A–C above. In
order to give you an idea of how of the flow behaviour, consider Fig. 2 for case A (Re = 10),
Fig. 3 for case B (Re = 100) and Fig. 4 for case C (Re = 8000).

Figure 2: Simulation results for the lid-driven cavity, case A (Re = 10). Velocity field (left) and
temperature field (right) at t = 20. The colour scale ranges from 0 (blue) to 1 (red).

A detailed description of different steps of the algorithm and the boundary conditions is given in
the Appendix A. A template for the code is available in Appendix B and the course homepage.
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Figure 3: Simulation results for the lid-driven cavity, case B (Re = 100). Velocity field (left)
and temperature field (right) at t = 20. The colour scale ranges from 0 (blue) to 1 (red).

Figure 4: Simulation results for the lid-driven cavity, case C (Re = 8000). Velocity field (left)
and temperature field (right) at t = 20. The colour scale ranges from 0 (blue) to 1 (red).
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Figure 5: Simulation results for the lid-driven cavity, case B (Re = 100). Transient behaviour
of the velocity U at a velocity probe located at (x, y) = (0.5, 0.5).
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4 Task 2: Rayleigh-Bénard problem
(only for PhD students SG3114)

The flow induced by small density variations due to temperature differences between two walls
is called Rayleigh-Bénard convection. The control parameter is the so-called Rayleigh number
Ra which describes the ratio of buoyancy to viscous forces acting on the flow.

Depending on Ra, various flow regimes can be studied, ranging from stable flow configuration
for low Ra, two-dimensional convection rolls (i.e. large counter-rotating vortices, see below),
hexagonal convection cells, and finally for high Ra fully turbulent flow. The major relevance
for us to study this flow is that using comparably simple tools from linear stability analysis
the changeover from stable to unstable (i.e. amplifying) flow can be exactly determined. To
numerically check this so-called critical Rayleigh number Rac provides a very useful validation
of the numerical code.

If the flow field is subjected to a temperature gradient between the two walls, density variation
in the flow may be generated. These density variations, due to buoyancy forces, induce motion
in the fluid. The corresponding force in the momentum equations can be modelled by means
of the Boussinesq approximation. In order to tackle this flow problem, the governing equations
(1)-(2) are thus coupled to the temperature equation (3) using the forcing term f2. Then, a
slightly different non-dimensionalisation has to be employed, essentially based on a convective
velocity scale. The only non-dimensional numbers in the equations are the Rayleigh number Ra
and the Prandtl number Pr. For a two-dimensional flow the final non-dimensional equations
can be written as

∂u

∂x
+
∂v

∂y
= 0 , (22)

∂u

∂t
+
∂P

∂x
= −∂(u2)

∂x
− ∂(uv)

∂y
+ Pr

(
∂2u

∂x2
+
∂2u

∂y2

)
, (23)

∂v

∂t
+
∂P

∂y
= −∂(uv)

∂x
− ∂(v2)

∂y
+ Pr

(
∂2v

∂x2
+
∂2v

∂y2

)
+ f2 , (24)

∂θ

∂t
= −∂(uθ)

∂x
− ∂(vθ)

∂y
+

(
∂2θ

∂x2
+
∂2θ

∂y2

)
. (25)

The forcing in the normal direction, caused by buoyancy forces, is

f2 = RaPrθ . (26)

The original formulation of the Rayleigh-Bénard convection problem is considered as the flow
between two infinite parallel walls, see the sketch in Fig. 7. However, for the present project,
we consider a two-dimensional cavity where the top and bottom walls are kept at different
temperatures and the side-walls are assumed to be adiabatic ( ∂θ∂n = 0). A sketch of the geometry
is given in Figure 6. Here, the boundary conditions are

x = 0 : u = v = 0,
∂θ

∂x
= 0 , (27)

x = lx : u = v = 0,
∂θ

∂x
= 0 , (28)

y = 0 : u = v = 0, θ = θB , (29)

y = ly : u = v = 0, θ = θT . (30)



Computational Fluid Dynamics SG2212/SG3114, Spring 2013 8

lx

ly

u=0, v=0, !=!B

u=0, v=0, !=!T

u=
0,

 v
=

0,
 !

x=
0

u=
0,

 v
=

0,
 !

x=
0

Figure 6: Close cavity with non-isothermal walls.

Initial conditions are at t = 0 non-moving fluid, i.e. u(t = 0) = v(t = 0) = 0. For the scalar,
assume a linear profile in the vertical direction,

θ(x, y, t = 0) = θB +
y

ly
(θT − θB) . (31)
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Figure 7: Top: Sketch of the flow structure (convection cells). Bottom: Stable and unstable
(shaded) regions for Rayleigh-Bénard problem. Here, λ = 2π/K is the wavelength of the
unstable perturbation. The critical Rayleigh number is Rac = 1708 with associated spatial
wavenumber K = 2π/λc = 3.12 (λc = 2.01).

For cases where θT > θB, the density is decreasing with increasing height. This corresponds to a
state with is called stable stratification, which means that the flow is stable and all disturbances



Computational Fluid Dynamics SG2212/SG3114, Spring 2013 9

will decay eventually. However, if θT < θB, corresponding to unstable stratification, for large
enough values of Ra the flow becomes unstable. A stability diagram for this case is shown in
Fig. 7. It can be seen that the first instability appears for Rac = 1708 with a wavenumber
Kc = 3.12, which corresponds to a wavelength of λc = 2.01.

Your task is to include the forcing f2 and the energy equation into the code developed in Task 1
and run it for cases A and B given below. Your report should discuss the results for these cases
together with answers to questions Q1–Q3.

For all runs, choose the Prandtl number Pr = 0.71, the box size lx = 10, ly = 1, and the
resolution Nx = 200, Ny = 20. The domain thus becomes elongated in the x-direction, imitat-
ing an infinite domain. As initial conditions random small-scale noise of moderate amplitude
(±0.1(θB − θT )) should be used in order to trigger the instability. The time step ∆t should be
chosen such that the time integration remains stable.

Questions:

Q1) Give the definitions of the non-dimensional parameters Pr and Ra both in terms of math-
ematical symbols and words (physical meaning). Why do the equations not contain any
Reynolds number?

Q2) Estimate the wavelength of the instability at Ra = 1715. What boundary conditions
should be employed (both for velocity and temperature) to exactly reproduce the critical
Rayleigh number?

Q3) Based on time signals such as the example given in Figure 8, try to estimate the critical
Rayleigh number for your specific discretisation (see description for run B).

Flow cases:

A) Run the code for Ra = 100, 1000, 50000, θT = 1 and θB = 0.

These parameters correspond to stable flow. You should observe that initial disturbances
will decay due to viscosity. For the case of Ra = 50000 the appropriate time step must
be selected.

B) Run the code for θT = 0 and θB = 1.

Here, if the value of Rayleigh number is large enough (Ra > 1708) flow instability will be
observed. Run the code for different values of Ra and try to find “experimentally” the
critical value Rac. To determine the stability of a specific run, consider the time evolution
of a probe in the flow, see Fig. 8. If you observe exponential growth (solid line in Fig. 8),
you are in the unstable regime, otherwise the flow is stable.
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Figure 8: Temporal evolution of the probe signals for two Rayleigh numbers close to the neutrally
stable state (Rac = 1708). It can clearly be seen that the supercritical trajectory leads to
exponential growth, whereas the subcritical case eventually will exponentially decay.
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Figure 9: Stationary flow patterns for large times corresponding to Ra = 1700, Ra = 1715,
Ra = 2700 and Ra = 50000 (from top to bottom). Both the velocity distribution and the
temperature field are shown for each Rayleigh number.
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A Solution procedure and implementation

A.1 Grid

In order to avoid spurious checkerboard solution the equations are discretized on a staggered
grid. Figure 10 shows the numerical domain where the pressure p is defined in cell centres
and the velocities u and v are defined in the centre of the vertical and horizontal cell faces,
respectively. Table 1 gives the number of unknowns for each of the flow variables to solve for.
Here, nx and ny are the number of cells in the x and y directions, respectively. The coordinates

Table 1: Resolution for the various solution variables.

Variable Interiour resolution Boundary conditions included

P nx× ny (nx+ 2)× (ny + 2)

U (nx− 1)× ny (nx+ 1)× (ny + 2)

V nx× (ny − 1) (nx+ 2)× (ny + 1)

of the grid points are given as

Xi = i
lx
nx

, i = 0, · · · , nx , (32)

Yj = j
ly
ny

, j = 0, · · · , ny , (33)

where lx and ly are the lengths in x and y directions. Note that number of grid points (including
the boundary points) is nx+ 1 and ny + 1, respectively.

A.2 Boundary conditions

A.2.1 Velocity

Boundary conditions for both velocity components are given all around the rectangular domain.
In the following, these vectors are denoted US for U at the lower boundary (south), VW for V
on the left boundary (west), etc. Thus, on each edge a total of (nx+ 1) or (ny + 1) boundary
values are specified on the cell corners. The Dirichlet boundary condition for U on the left and
the right boundaries of computational domain can be directly applied as the velocity nodes lie
on those boundaries, see Fig. 10. The same is valid for V on the top and the bottom boundaries.
However, the boundary conditions for U on the top and bottom boundaries should be imposed
by choosing the correct values for the dummy cells (cells outside the domain) in such a way
that linear interpolation over the boundary will give the correct value at the boundary. The
formulation of the boundary conditions is asked in Q3.

A.2.2 Pressure

As it was shown during the lecture, we have the choice of specifying homogeneous Neumann
boundary conditions for the pressure. In other words the normal derivative at the boundaries
should vanish for the pressure, i.e.,

∂P

∂n
= 0 . (34)
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Figure 10: Sketch of the staggered grid. Circles are pressure nodes, squares U -velocity, and
triangles V -velocity. Filled symbols correspond to interiour points, whereas open symbols rep-
resent the dummy values. The domain boundary is indicated by the thick blue line, on which
also the boundary conditions are given.

Again, the value for the pressure dummy cells has to be chosen appropriately to fulfill this
condition. The discrete formulation of this boundary condition should also be given as part of
Q3.

A.3 Data structure

All variables are stored as matrices in MATLAB. Note that the first index in MATLAB denotes
the row and the second index the column, which means that the direction of increasing x is
from top to bottom in the matrices. Similarly, increasing the y direction is from left to right in
the matrix. Therefore, the storage of variables in the matrices corresponds to the transpose of
the “physical” domain.

We introduce matrices U and V which only contain the unknown velocity values at the inner
cells, and not the (known) boundary values. Thus, the size for the matrix U containing the u
velocity is (nx− 1)× ny. Similarly, V containing the v velocity has nx× (ny − 1) elements.

At time t = 0 the velocities can be initiated with zeros (i.e. fluid at rest) in MATLAB as

1 U=zeros(nx-1,ny);

2 V=zeros(nx,ny-1);

To perform central difference over the inner points, we need to include the boundary points in
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Figure 3.4: Cartesian finite-volume grid where the velocity components and the pressure uses staggered
grids.

which satisfies the divergence constraint. If it is input into the equation for u and v we find the expression

dg

dt
+

8

Re · ∆x2
g = 0 ⇒ g = e− 8t

Re·∆x2

Thus we have a spurious solution consisting of checkerboard modes which are damped slowly for velocity
and constant in time for the pressure. This mode will corrupt any true numerical solution and yields this
discretization unusable as is. These modes are a result of the very weak coupling between nearby finite
volumes or grid points, and can be avoided if they are coupled by one sided differences or if they are damped
with some type of artificial viscosity.

Staggered cartesian grid

To eliminate the problem with spurious checkerboard modes, we can use a staggered grid as in figure 3.4,
where the control volumes for the streamwise, spanwise and pressure are different.

The control volume for the continuity equation is centered abound the pressure point and the discretiza-
tion becomes

(
ui+ 1

2 ,j − ui− 1
2 ,j

)
∆y +

(
vi,j+ 1

2
− vi,j− 1

2

)
∆x = 0

or
ui+ 1

2 ,j − ui− 1
2 ,j

∆x
+

vi,j+ 1
2

− vi,j− 1
2

∆y
= 0

The control volume for the streamwise velocity is centered around the streamwise velocity point and
the discretization becomes

∂ui+1/2,j

∂t
+

u2
i+1,j − u2

i,j

∆x
+

(uv)i+1/2,j+1/2 − (uv)i+1/2,j−1/2
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−

1
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ui+1/2,j+1 − 2ui+1/2,j + ui+1/2,j−1

∆y2
= 0

Figure 11: Sketch of the staggered grid. Open symbols indicate dummy cells situated outside
the computational domain.

U and V. These extended matrices are called Ue and Ve. They can be created by adding the
appropriate rows and columns to the U and V matrices. For example for the u velocity this is
done as follows:

1) Add vectors uE and uW containing the boundary values at the right and left boundaries of
the physical domain, respectively (transposed in MATLAB). In MATLAB code:

1 Ue=[uW ; U ; uE];

2) Introduce dummy cells with values which give the correct boundary conditions on the top
and bottom boundaries of the physical domain. The boundary values are stored in vectors
uN and uS as described above.

In MATLAB:

1 Ue=[2uS’-Ue(:,1) Ue 2uN’-Ue(:,end)];

The matrix Ve is built in a similar way. Then, the size of the new matrices will be

Ue: (nx+ 1)× (ny + 2)
Ve: (nx+ 2)× (ny + 1)

The advection (non-linear) terms are calculated using the values of the velocity field on the
boundaries of the control volumes which are different from the locations the discrete velocity
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Figure 12: Boundary condition treatment of velocity

field is defined. Therefore, we introduce matrices which contain an averaged value of u and v
on the boundaries of the control volumes. To generate these data Ue and Ve should be averaged
in the x or y direction depending on the term to be evaluated. Here, we define the averaging
function avg( ) such that

[avg(f)]i =
1

2
(fi−1 + fi) . (35)

Note that the length of the resulting vector avg(f) is one element less than the length of f .
Furthermore, avg(f) can be applied in both the x- and y-directions. In the example below, the
function makes the averaging in either x or y direction.

In MATLAB:

1 function B=avg(A,idim)

2 if(idim==1)

3 B=1/2 [ A(2:end,:) + A(1:end-1,:) ];

4 elseif(idim==2)

5 B=1/2 [ A(:,2:end) + A(:,1:end-1) ];

6 end;

Applying this function to average the u velocity in the y direction can be achieved as follows in
MATLAB:

1 Ua=avg(Ue,2);

After averaging the size of the matrix Ua will be (nx+ 1)× (ny + 1).

A.4 Construction of Laplace (Lp) operator

One of the most crucial steps of the code is the implementation of the Laplace operator. We
need to construct that in a efficient way. To save memory and gain speed when the equations
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Figure 13: Averaging of velocities.

are solved we make use of sparse matrix storage in MATLAB. This can be done in a smart
and concise but slightly more complicated way in MATLAB. Let us first define the Laplace
operator for a one-dimensional case. Using central finite differences second order, with Neumann
boundary condition at the two boundaries we can define a derivative matrix with the following
structure,

D
2

=
1

h2




−1 1
1 −2 1

. . .
. . .

. . .

1 −1


 . (36)

This is implemented in the function DD(n,h), available as template.

To extended this operator for a two-dimensional case, one can use the kron operator in MATLAB
to perform a Kronecker tensor product,

kron(A,B) =



A(1, 1) ·B A(1, 2) ·B · · ·
A(2, 1) ·B A(2, 2) ·B · · ·

...
...

. . .


 . (37)

Then one obtains the derivative matrix to compute Uxx = LP · U by choosing

A = I
ny×ny, B = D

2
,

and Uyy by choosing

A = D
2
, B = I

nx×nx .

In MATLAB:

1 Lp=kron(speye(ny),DD(nx,hx))+...
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The actual level of the pressure is not determined since only the pressure gradient enters the
Navier–Stokes equations, i.e. both P + const. and P satisfy the Poisson equation. Therefore,
one needs to fix the value of the pressure at one node, e.g. P1,1 = 0. This is achieved by the
following modification of the equation system

Lp(1, :) = 0, Lp(1, 1) = 1, R(1) = 0 .

Ignoring this gives singular matrices. The above observation is of course a general feature: For
any incompressible flow, the pressure is only determined up to a constant.

A.5 Outline of required steps

Assume that we consider an iteration that starts at t = tn with Un, V n and we will march
towards t = tn+1 = tn + ∆t.

1. Compute the non-linear advection terms, namely NLx
n, NLx

n :

NLx
n = −((Un)2)x − (UnV n)y (38)

NLy
n = −(UnV n)x − ((V n)2)y. (39)

The term NLx
n is evaluated on the U velocity grid, similarly NLy

n on the V grid (see
Fig. 11). The derivatives should be calculated based on the difference between the velocity
values at neighbouring velocity nodes. Therefore, the velocities Un and V n need to be
interpolated to the these nodes such that derivatives can be taken. For example for
(UnV n)x we proceed as follows:

((UnV n)x)i,j+ 1
2

=
1

hx

[
Ui+ 1

2
,j+ 1

2
Vi+ 1

2
,j+ 1

2
− Ui− 1

2
,j+ 1

2
Vi− 1

2
,j+ 1

2

]
(40)

where Ui+ 1
2
,j+ 1

2
=

1

2

[
Ui+ 1

2
,j+1 + Ui+ 1

2
,j

]
(41)

and Vi+ 1
2
,j+ 1

2
=

1

2

[
Vi+1,j+ 1

2
+ Vi,j+ 1

2

]
. (42)

In MATLAB:

1 Ua=avg(Ue,2);

2 Va=avg(Ve,1);

3 UVx = 1/hx * diff( Ua.*Va, 1 , 1);

For the terms ((Un)2)x and ((V n)2)y the difference is taken between the pressure nodes
onto which the velocity has to be interpolated first.

2. Compute the viscous diffusion terms, namely DIFFnx, DIFF
n
y

DIFFnx =
1

Re
[Unxx + Unyy] (43)

DIFFny =
1

Re
[V n
xx + V n

yy] . (44)

For example

[DIFFnx]i+ 1
2
,j =

1

Re

(
Ui− 1

2
,j − 2Ui+ 1

2
,j + Ui+ 3

2
,j

h2x
+
Ui+ 1

2
,j−1 − 2Ui+ 1

2
,j + Ui+ 1

2
,j+1

h2y

)
.

(45)
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Use the extended grid and store only interior points.

In MATLAB:

1 viscu = diff( Ue(:,2:end-1),2,1 )/hx^2 + ...

2 diff( Ue(2:end-1,:),2,2 )/hy^2;

The command diff( ) is a built-in MATLAB operator which takes the difference between
adjacent components. The first argument is the matrix to operate on, the second is the
order of the difference (here 2 for the second derivative) and the third is specifying along
which matrix dimension the derivative is taken (1 for x-direction and 2 for y-direction).

3. Compute forcing terms if required, Fnx , F
n
y .

4. Advance the solution to an intermediate time level (U∗ and V ∗) using explicit Euler

U∗ − Un
∆t

= NLnx +DIFFnx + Fnx , (46)

V ∗ − V n

∆t
= NLny +DIFFny + Fny . (47)

5. Solve the Poisson equation for the pressure

∆Pn+1 =
1

∆t
(DxU

∗ +DyV
∗) . (48)

Now we need to solve the Poisson equation with homogeneous Neumann conditions for
Pn+1. Construct the discretised Laplace operator Lp (for details on the structure of the
operator Lp see Section A.4 above) and evaluate DxU

∗ + DyV
∗ with central differences

second order.

LpP
n+1 = R with R =

1

∆t
(DxU

∗ +DyV
∗). (49)

⇒ Pn+1 = Lp
−1R . (50)

Here, Pn+1 and R are of size nx×ny, containing the unknown pressure and the right-hand
side (r.h.s.) at the cell centres, respectively.

In MATLAB:

1 rhs = (diff([uW ; U ; uE])/hx + ...)/dt;

2 rhs = reshape(rhs,nx*ny,1);

3 P = Lp\rhs;

4 P = reshape(P,nx,ny);

6. Compute the velocity field at time step n+ 1 according to

Un+1 = U∗ −∆tGPn+1 . (51)
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B Code

B.1 SG2212 template.m

1 % Navier-Stokes solver,

2 % adapted for course SG2212

3 % KTH Mechanics

4 %

5 % Depends on avg.m and DD.m

6 %

7 % Code version:

8 % 20120301

9

10 clear all

11

12 %------------------------------------------

13

14 lid_driven_cavity=1;

15

16 if (lid_driven_cavity==1)

17 % Parameters for test case I: Lid-driven cavity

18 % The Richardson number is zero, i.e. passive scalar.

19

20 Pr = 0.71; % Prandtl number

21 Re = 100.; % Reynolds number

22 Ri = 0.; % Richardson number

23

24 dt = 0.001; % time step

25 Tf = 20; % final time

26 Lx = 1; % width of box

27 Ly = 1; % height of box

28 Nx = 50; % number of cells in x

29 Ny = 50; % number of cells in y

30 ig = 200; % number of iterations between output

31

32 % Boundary and initial conditions:

33 Utop = 1.;

34 % IF TEMPERATURE: Tbottom = 1.; Ttop = 0.;

35 % IF TEMPERATURE: namp = 0.;

36 else

37 % Parameters for test case II: Rayleigh-Bnard convection

38 % The DNS will be stable for Ra=1705, and unstable for Ra=1715

39 % (Theoretical limit for pure sinusoidal waves

40 % with L=2.01h: Ra=1708)

41 % Note the alternative scaling for convection problems.

42

43 Pr = 0.71; % Prandtl number

44 Ra = 2715; % Rayleigh number

45
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46 Re = 1./Pr; % Reynolds number

47 Ri = Ra*Pr; % Richardson number

48

49 dt = 0.0005; % time step

50 Tf = 20; % final time

51 Lx = 10.; % width of box

52 Ly = 1; % height of box

53 Nx = 200; % number of cells in x

54 Ny = 20; % number of cells in y

55 ig = 200; % number of iterations between output

56

57 % Boundary and initial conditions:

58 Utop = 0.;

59 % IF TEMPERATURE: Tbottom = 1.; Ttop = 0.;

60 namp = 0.1;

61 end

62

63

64 %------------------------------------------

65

66 % Number of iterations

67 Nit = ...

68 % Spatial grid: Location of corners

69 x = linspace( ... );

70 y = linspace( ... );

71 % Grid spacing

72

73 hx = ...

74 hy = ...

75 % Boundary conditions:

76 uN = x*0+Utop; vN = avg(x,2)*0;

77 uS = ... vS = ...

78 uW = ... vW = ...

79 uE = ... vE = ...

80 tN = ... tS = ...

81 % Initial conditions

82 U = zeros(Nx-1,Ny); V = zeros(Nx,Ny-1);

83 % linear profile for T with random noise

84 % IF TEMPERATURE: T = ... + namp*rand(Nx,Ny)

85 % Time series

86 tser = [];

87 Tser = [];

88

89 %-----------------------------------------

90

91 % Compute system matrices for pressure

92 % First set homogeneous Neumann condition all around

93 % Laplace operator on cell centres: Fxx + Fyy

94 Lp = kron(speye(Ny), ... ) + kron( ... ,speye(Nx));
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95 % Set one Dirichlet value to fix pressure in that point

96 Lp(1,:) = ... ; Lp(1,1) = ... ;

97 % For more speed, you could pre-compute the LU decomposition

98 % [LLp,ULp] = lu(Lp);

99 %-----------------------------------------

100

101 % Progress bar

102 fprintf(...

103 ’[ | | | | ]\n’)

104

105 %-----------------------------------------

106

107 % Main loop over iterations

108

109 for k = 1:Nit

110

111 % include all boundary points for u and v (linear extrapolation

112 % for ghost cells) into extended array (Ue,Ve)

113 Ue = ...

114 Ve = ...

115

116 % averaged (Ua,Va) of u and v on corners

117 Ua = ...

118 Va = ...

119

120 % construct individual parts of nonlinear terms

121 dUVdx = ...

122 dUVdy = ...

123 dU2dx = ...

124 dV2dy = ...

125

126 % treat viscosity explicitly

127 viscu = ...

128 viscv = ...

129

130 % buoyancy term

131 % IF TEMPERATURE: fy = ...

132

133 % compose final nonlinear term + explicit viscous terms

134 U = U + dt/Re*viscu - dt*(...);

135 V = V + dt/Re*viscv - dt*(...) + % IF TEMPERATURE: dt*fy;

136

137 % pressure correction, Dirichlet P=0 at (1,1)

138 rhs = (diff( ... )/hx + diff( ... )/hy)/dt;

139 rhs = reshape(rhs,Nx*Ny,1);

140 rhs(1) = ...

141 P = Lp\rhs;

142 % alternatively, you can use the pre-computed LU decompositon

143 % P = ULp\(LLp\rhs);
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144 P = reshape(P,Nx,Ny);

145

146 % apply pressure correction

147 U = U - ...

148 V = V - ...

149

150 % Temperature equation

151 % IF TEMPERATURE: Te = ...

152 % IF TEMPERATURE: Tu = ...

153 % IF TEMPERATURE: Tv = ...

154 % IF TEMPERATURE: H = ...

155 % IF TEMPERATURE: T = T + dt*H;

156

157 %-----------------------------------------

158

159 % progress bar

160 if floor(51*k/Nit)>floor(51*(k-1)/Nit), fprintf(’.’), end

161

162 % plot solution if needed

163 if k==1|floor(k/ig)==k/ig

164

165 % compute divergence on cell centres

166 if (1==1)

167 div = diff([uW;U;uE])/hx + diff([vS’ V vN’],1,2)/hy;

168

169 figure(1);clf; hold on;

170 contourf(avg(x,2),avg(y,2),div’);colorbar

171 axis equal; axis([0 Lx 0 Ly]);

172 title(sprintf(’divergence at t=%g’,k*dt))

173 drawnow

174 end

175

176 % compute velocity on cell corners

177 Ua = ...

178 Va = ...

179 Len = sqrt(Ua.^2+Va.^2+eps);

180

181 figure(2);clf;hold on;

182 %contourf(avg(x,2),avg(y,2),P’);colorbar

183 contourf(x,y,sqrt(Ua.^2+Va.^2)’,20,’k-’);colorbar

184 quiver(x,y,(Ua./Len)’,(Va./Len)’,.4,’k-’)

185 axis equal; axis([0 Lx 0 Ly]);

186 title(sprintf(’u at t=%g’,k*dt))

187 drawnow

188

189 % IF TEMPERATURE: % compute temperature on cell corners

190 % IF TEMPERATURE: Ta = ...

191

192 % IF TEMPERATURE: figure(3); clf; hold on;
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193 % IF TEMPERATURE: contourf(x,y,Ta’,20,’k-’);colorbar

194 % IF TEMPERATURE: quiver(x,y,(Ua./Len)’,(Va./Len)’,.4,’k-’)

195 % IF TEMPERATURE: axis equal; axis([0 Lx 0 Ly]);

196 % IF TEMPERATURE: title(sprintf(’T at t=%g’,k*dt))

197 % IF TEMPERATURE: drawnow

198

199 % Time history

200 if (1==1)

201 figure(4); hold on;

202 tser = [tser k*dt];

203 Tser = [Tser Ue(ceil((Nx+1)/2),ceil((Ny+1)/2))];

204 plot(tser,abs(Tser))

205 title(sprintf(’Probe signal at x=%g, y=%g’,...

206 x(ceil((Nx+1)/2)),y(ceil((Ny+1)/2))))

207 set(gca,’yscale’,’log’)

208 xlabel(’time t’);ylabel(’u(t)’)

209 end

210 end

211 end

212 fprintf(’\n’)
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B.2 DD template.m

1 function A = DD(n,h)

2 % DD(n,h)

3 %

4 % One-dimensional finite-difference derivative matrix

5 % of size n times n for second derivative:

6 % h^2 * f’’(x_j) = -f(x_j-1) + 2*f(x_j) - f(x_j+1)

7 %

8 % Homogeneous Neumann boundary conditions on the boundaries

9 % are imposed, i.e.

10 % f(x_0) = f(x_1)

11 % if the wall lies between x_0 and x_1. This gives then

12 % h^2 * f’’(x_j) = + f(x_0) - 2*f(x_1) + f(x_2)

13 % = + f(x_1) - 2*f(x_1) + f(x_2)

14 % = f(x_1) + f(x_2)

15 %

16 % For n=5 and h=1 the following result is obtained:

17 %

18 % A =

19 %

20 % -1 1 0 0 0

21 % 1 -2 1 0 0

22 % 0 1 -2 1 0

23 % 0 0 1 -2 1

24 % 0 0 0 1 -1

25 %

26 % This function belongs to SG2212.m

27

28 A = spdiags( ... )/h^2;

29

30 % "spdiags" generalises the function "diags" such that multiple

31 % vectors can be provided which are then put on the

32 % respective diagonals. In addition, sparse storage is used.

33 % See "help spdiags" for more information.
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B.3 avg template.m

1 function B = avg(A,idim)

2 % AVG(A,idim)

3 %

4 % Averaging function to go from cell centres (pressure nodes)

5 % to cell corners (velocity nodes) and vice versa.

6 % avg acts on index idim; default is idim=1.

7 %

8 % This function belongs to SG2212.m

9

10 if nargin<2, idim = 1; end

11

12 if (idim==1)

13 B = (A( ... , ... )+A( ... , ... ))/2;

14 elseif (idim==2)

15 B = (A( ... , ... )+A( ... , ... ))/2;

16 else

17 error(’avg(A,idim): idim must be 1 or 2’)

18 end
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%
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% . error in matrix for Laplace operator, eq. (39)

% . error in equation (48)
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% . index in equations (33) and (34)
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% . text in section 1
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% . initial conditions for the scalar given (new eq.31)

% Version 1.05 29/2/2012

% . new m-code environment

% . addition of questions Q1-Q4, Q1-Q3

% . general text updates/typos

% Version 1.06 3/3/2012

% . improved explanation in A.5, step 1

% Version 1.07 15/3/2012

% . corrected Pr in equations 23-25
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