## **Microcontrollers**

ă 💵 🔊

-Definition, Basics and Trends

Anders Pettersson Technical Marketing Manager Microcontrollers Nordic and Baltic





### After the session you should have learnt.

- Know the difference between a MCU and a MPU and a CPU.
- Differences between a 8 bit and 32 bit MCU.
- Differences between Risc and Cisc architecture
- Differences between Harvard and Von Neuman Architecture
- Temporary production technologies





# **Definition of a Microcontroller**



## Definition of a Microcontroller 5

- What is the Definition of a Microcontroller?
- There is no absolut definition...

A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals. Program memory in the form of NOR flash or OTP ROM is also often included on chip, as well as a typically small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications.

....from Wikipedia





# Architecture

**Cisc and Risc** 



# CISC vs RISC

#### CISC

- Emphasis on HW ٠
- Includes Multi-clock complex instructions •
- Memory-to-memory: "LOAD" and ٠ "STORE" incorporated in instructions
- Small code sizes, high cycles per second ٠
- Transistors used for storing complex • instructions

#### **RISC**

- **Emphasis on SW**
- Single-clock, reduced instructions only ٠
- Register-to-register: "LOAD" and "STORE" and independent from instructions
- Low cycles per second, larger code size •
- Spends more transistors on memory • registers

Example: Multiply (MULT), considered as a complex instruction

CISC: MULT 2:3, 5:2

RISC: LOAD A, 2:3 LOAD B, 5:2 PROD A, B STORE 2:3, A





# Block diagram and the Core



## Essential block diagram of a MCU



life.auamented



## **Cortex-M3 Microprocessor**

- Hierarchical processor integrating core and advanced system peripherals
- Cortex-M3 core
  - Harvard architecture
  - 3-stage pipeline w. branch speculation
  - Thumb<sup>®</sup>-2 and traditional Thumb
  - ALU w. H/W divide and single cycle multiply
- Cortex-M3 Processor
  - Cortex-M3 core
  - Configurable interrupt controller
  - Bus matrix
  - Advanced debug components
  - Optional MPU & ETM (Not available in STM32F10x)



12



## **Cortex-M3 Microprocessor**





## Processors for All Applications 14









## Architecture of the bus

Cortex M3 Architecture: Harvard benefits with Von Neumann single memory space



## Cortex-M3 Memory Map

- Vendor Specific (0.5GB)
  - Set aside to enable vendors to implement peripheral compatibility with previous systems
- Private Peripheral Bus (1M)
  - Address space for system components (CoreSight, NVIC etc.)
- External Device (1GB).
  - Intended for external devices and/or shared memory that needs ordering/non-buffered
- External RAM (1GB)
  - Intended for off chip memory
- Peripheral (0.5G)
  - Intended for normal peripherals. The bottom 1MB of the 32MB peripheral address space (0x40000000 – 0x400FFFF) is reserved for bit-band accesses. Accesses to the peripheral 32MB bit band alias region (0x42000000 – 0x43FFFFF) are remapped to this 1MB
- SRAM (0.5GB)
  - Intended for on-chip SRAM. The bottom 1MB of the SRAM address space (0x20000000 - 0x200FFFF) is reserved for bit-band accesses. Accesses to the SRAM 32MB bit band alias region (0x22000000 – 0x23FFFFFF) are remapped to this 1MB address space.
- Code(0.5GB)
  - Reserved for code memory (flash, SRAM). This region is accessed via the Cortex-M3 ICode and DCode busses.







# **Production Technologies**

• The road to success...



### CMOSF9 eEEPROM Technology History



# Technology to Break Price Barriers 20

- Technology driven development
- Breakthrough with 130nm lithography
- E<sup>2</sup> non-volatile memory, analog and digital peripherals

0,4µM

0,13µm





### What part can be shrunk with production technologies? 22



Total digital bloc is **25% of the die size** 

The CPU represents **30% of the digital area** 

Cortex M0 is half gate count of M3 for the same configuration

Using M0 instead of M3 would lead to :

- Less than 4% die area gain
- Less than 2% product cost gain



### Example of Cost Distribution for a MCU

#### **Cost share**



Silicon
Test
Packaging
Logistic/Stock
Royalties

- Majority of the cost is not coming from the silicon itself
- The smaller the die size, the higher the non silicon cost

• Focusing all the innovation in the silicon is not the only way to decrease the cost



## How do we think when we design a MCU?



## MCU market forecast



Source: IC Insights



## ST MCUs – strategy <sup>27</sup>







Features

ST CONFIDENTIAL

## **Minimal External Components**

#### Built-in Supervisor reduces need for external components

- Filtered reset input, Power-On reset, Low-Voltage Detect, Brown-Out Detect, Watchdog Timer with independent clock
- One main crystal drives entire system (with help from PLL)
  - Inexpensive 4-16 MHz crystal drives CPU, USB, all peripherals
- Embedded 8 MHz RC can be used as main clock
  - Optional 32 kHz crystal needed additionally for RTC, can run on internal 40 kHz RC
- Only 7 external passive components for base system on LQFP100 package!!



## ST has licensed all Cortex-M processors 30

Forget traditional 8/16/32-bit classifications and get

- Seamless architecture across all applications
- Every product optimized for ultra-low power and ease of use





## Cortex-M Powerful & scalable instruction set

**Floating Point Unit** 

DSP (SIMD, fast MAC)

Advanced data processing Bit field manipulations

#### General data processing I/O control tasks





| VABS VADD             | VCMP    | VCMPE     | VCVT    | VCVTR   | VDIV      | VLDM      |
|-----------------------|---------|-----------|---------|---------|-----------|-----------|
| VLDR VMLA             | VMLS    | VMOV      | VMRS    | VMSR    | VMUL      | VNEG      |
| VNMLA VMMLS           | VNMUL   | VPOP      | VPUSH   | VSQRT   | VSTM      | VSTR      |
| VSUB VFMA             | VFMS    | VENMA     | VENMS   |         | Cort      | ex-M4 FPU |
|                       |         |           |         |         |           |           |
| PKH QADD              | QADD16  | QADD8     | QASX    | QDADD   | QDSUB     | QSAX      |
| QSUB QSUB16           | QSUBI   | SADD16    | SADDB   | SASX    | SEL       | SHADD16   |
| SHADDE SHASX          | SHSAX   | SHSUB16   | SHSUBB  | SMLABB  | SMLABT    | SMLATB    |
| SMLATT SMLAD          | SMLALBB | SMLALBT   | SMLALTB | SMLALTT | SMLALD    | SMLAWB    |
| SMLAWT SMLSD          | SMUSLD  | SMMLA     | SMMLS   | SMMUL   | SMUAD     | SMULBB    |
|                       | STILSLO |           |         |         |           |           |
| ADC ADD               | ADR     | AND       | ASR     | B       | SMULBT    | SMULTT    |
| CLZ BFC 0             | BFI     | BIC       | CDP     | CLREX   | SMULTB    | SMULWT    |
| CBNZ CBZ CMN          | CMP     | DBG       | EOR     | LDC     | SMULWB    | SMUSD     |
| LDMIA LDMDB           | LDR     | LDRB      | LDRBT   | LDRD    | SSAT16    | SSAX      |
| LDREX LDREXB          | LDREXH  | LDRH      | LDRHT   | LDRSB   | SSUB16    | SSUB8     |
| LDRSBT LDRSHT         | LDRSH   | LDRT      | MCR     | LSL     | ENTAD     | SYTABIA   |
| LSR MCRR              | MLS     | MLA       | MOV     | MOVT    | SATAB     | SATADIO   |
| MRC MRRC C            | MUL     | MVN       | NOP     | ORN     | SXTAH     | SXTB16    |
| ORR PLD               | PLDW    | PLI       | POP     | PUSH    | UADD16    | UADD8     |
| RBIT REV              | REV16   | REVSH     | ROR     | RRX     | UASX      | UHADD16   |
|                       |         | RSB       | 58C     | SBFX    | UHADD8    | UHASX     |
| BKPT BLX ADC ADD      | ADR     | SDIV      | SEV     | SMLAL   | UHSAX     | UHSURIA   |
| BX CPS AND ASR        | в       | SMULL     | SSAT    | STC     | LINCLER   |           |
| DMB BL                | BIC     | STMIA     | STMD8   | STR     | UNSUB     | UTIAAL    |
| DSB CMN CMP           | EOR     | STRB      | STRBT   | STRD    | UQADD16   | UQADD8    |
| ISB LDR LDRB          | LDM     | STREX     | STREXB  | STREXH  | UQASX     | UQSAX     |
| MRS (LDRH) (LDRSB (L  | DRSH    | STRH      | STRHT   | STRT    | UQSUB16   | UQSUB8    |
| MSR LSL LSR (         | MOV     | SUB       | SXTB    | SXTH    | USAD8     | USADA8    |
| NOP REV MUL MVN       | ORR     | твв       | твн     | TEQ     | USAT16    | USAX      |
| REVIS REVSH POP PUSH  | ROR     | TST       | UBFX    | UDIV    | USUB16    | USUBA     |
| SEV SXTB RSB SBC      | STM     | UMLAL     | UMULL   | USAT    | UXTAB     | UNTABIA   |
| SXTH UXTB STR STRB (S | STRH    | UXTB      | UXTH    | WFE     | UNTAB     | UNITABLE  |
| UXTH WFE SUB SVC      | 151     | WFI       | YIELD   |         | UXTAH     | UXTBI6    |
| Cortex-M0/M0+/M1      |         | Cortex-M3 |         |         | Cortex-M4 |           |

## STM32 – 7 product series

#### Common core peripherals and architecture:

peripherals:

USART, SPI, I<sup>2</sup>C

Multiple general-

purpose timers

Integrated reset and

brown-out warning

**Multiple DMA** 

2x watchdogs

**Real-time clock** 

Integrated regulator

PLL and clock circuit

External memory interface (FSMC)

Up to 3x 12-bit DAC

Up to 4x 12-bit ADC

(Up to 5 MSPS)

Main oscillator and 32 kHz oscillator

Low-speed and

high-speed internal

**RC** oscillators

-40 to +85 °C and up to 105 °C

operating

temperature range

Low voltage

2.0 to 3.6 V

or 1.65/1.7 to 3.6 V

(depending on series)

**Temperature sensor** 





## STM32 – leading Cortex-M portfolio 33



- Cortex-M4 w/ FPU, MPU and ETM
- Memory
  - Up to 1MB Flash memory
  - 192KB RAM including 64KB CCM data RAM
  - FSMC up to 60MHz
- New application specific peripherals
  - USB OTG HS w/ ULPI interface
  - Camera interface
  - HW Encryption\*\*: DES, 3DES, AES 256-bit, SHA-1 hash, RNG.
- Enhanced peripherals
  - USB OTG Full speed
  - ADC: 0.416µs conversion/2.4Msps, up to 7.2Msps in interleaved triple mode
  - ADC/DAC working down to 1.8V
  - Dedicated PLL for I2S precision
  - Ethernet w/ HW IEEE1588 v2.0
  - 32-bit RTC with calendar
  - 4KB backup SRAM in VBAT domain
  - Pure 1% RC
  - 2 x 32bit and 8 x 16bit Timers
  - high speed USART up to 10.5Mb/s
  - high speed SPI up to 37.5Mb/s
- RDP (JTAG fuse)
- More I/O:s in UFBGA 176 package



# STM32F4xx Block Diagram



## Free software solutions from ST









Standard **Peripheral Library** 

**USB** device library **USB Host Library** 

**Motor Control Library** 

Self-test routines for EN/IEC 60335-1 Class B



**DSP** Library



SPEEX Codec

**Encryption Library** 

cipher text

plain text

plain text

#### STM32 Audio Engine



# Software libraries – speed time to market

#### ST software libraries free at www.st.com/mcu

C source code for easy implementation of all STM32 peripherals in any application

- Standard library source code for implementation of all standard peripherals; code implemented in demos for STM32 evaluation board
- Motor control library sensorless vector control for 3-phase brushless motors
- USB Device Library Supporting HID,CDC, Audio, Mass Storage, DFU...)
- USB Host Library Supporting Mass Storage and HID
- DSP Library PID, IIR, FFT, FIR
- Graphics Library Drop down menus, radio buttons, sliders, ...

#### - Software Solutions for

- Ethernet TCP/IP
- Bluetooth
- SpeexCodec
- And many others.



Employed STM32F10x\_StdPeriph\_Lib 🗄 🗀 \_htmresc 🖻 🦳 Libraries 🗄 🦳 CMSIS STM32F10x\_StdPeriph\_Driver 🗄 🛅 inc 🛨 🗀 src 🗄 🦳 Project Ė٠ 🛅 Examples 🗄 🗀 ADC 🗄 🛅 BKP 🗄 🦳 CAN 🖻 🦳 CortexM3 🗄 🛅 CRC 🖻 🦳 DAC 🗄 🫅 DMA 🗄 🗀 EXTI 🗄 🛅 FLASH 🗄 🛅 FSMC 🗄 🦳 GPIO 🗄 🕋 12C 🗄 🕋 12S. 🗄 🦳 IWDG 🗄 🛅 Lib\_DEBUG 😟 🍋 NVIC. 🗄 🍋 PWB 🗄 🦳 RCC 🗄 🛅 RTC 🗄 🍋 SDIO 🗄 🛅 SPL 🗄 🛅 SysTick 🗄 🍋 TIM 😟 🍋 USART 🗄 🇀 WWDG 🗄 🦳 Template 🖻 🦳 Utilities 🗄 🛅 STM32\_EVAL 🥰 Release\_Notes.html stm32f10x\_stdperiph\_lib\_um.chm

# Ecosystem



- Evaluation board for full product feature evaluation
  - Hardware evaluation platform for all interfaces
  - Connection to all I/Os and all peripherals
- Discovery kit for cost-effective evaluation and prototyping





#### STM32303C-EVAL STM32373C-EVAL Available in Q4-2012

(For any support before please contact our local ST office)

#### STM32F3DISCOVERY Available End Q3-2012

(For any support before please contact our local ST office)

Large choice of IDE solutions from the STM32 and ARM ecosystem:

SIGNUM





DEVELOPMENT TOOLS

hitex



TASKING





a atollic



Ecosyster



# STM32F3-Discovery kit

- Includes everything for a quick start with the STM32F3 for less than \$11
- Ideal for evaluation, learning, prototyping
- The kit combines ST's STM32 F3 MCU with 9-axis MEMS sensors (gyroscope and e-compass), ready for 3D motion-sensing application development
- Dedicated web page: <u>www.st.com/stm32f3discovery</u> with SW example and documents





38





## MCU Trends – a selection of topics 42

- Price  $\rightarrow$  Technology
- Performance → Low Power and MIPS
- Memory size  $\rightarrow$  Larger flash and RAM
- Peripheral Integration → analog, RF
- Industry standard cores → Cortex Mx
- Advanced Peripherals  $\rightarrow$  USB Ethernet LCD SDRAM
- Predefined Libraries + RTOS  $\rightarrow$  Abstraction from the hardware







### After the session you should have learnt. 46

- Know the difference between a MCU and a MPU and a CPU.
- Differences between a 8 bit and 32 bit MCU.
- Differences between Risc and Cisc architecture
- Differences between Harvard and Von Neuman Architecture
- Temporary production technologies







www.st.com/stm32

